Grid User Management System
v.1.0.1

Project Documentation

BNL siteAAA 07 April 2005 14:37 EDT

TABLE OF CONTENTS i

Table of Contents

Manual
IS GUMS fOF YOU . . . oo e e 1
GUMS ArChiteCtUre o e e 4
How to: quick installation 11
Installation
Quick installation 18
Installation guide 24
CoNfIQUIAtION o 29
QUMS.CONTIg . . oo 30
EXampIes . . 37
GUMS Client COMmMANGS e 41
JDIN QUMS L 42
JDIN/QUMS-hOSt 48
LOgOING .« . oot 52
Logging implementation 54
11 €= = U1 T o 56
OPeration MOOESottt e e e 59
FAQ 60
CRaNgES . . o 1

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

TABLE OF CONTENTS

©2003 BNL SITEAAA

ALL RIGHTS RESERVED

11

1.1 1S GUMS FOR YOU 1

Is GUMS for you

Is GUMS the right tool for your grid site?

This article is intended to provide enongh information about GUMS that the reader can determine whether GUMS will fit
his or her site's needs. We describe the functions GUMS performs and discuss how it fits in the GRID architecture. We
also give a brief history of GUMS.

What does GUMS do?

The GUMS service performs one and only one function: it maps users' grid certificates/credentials to
site-specific identities/credentials (e.g., UNIX accounts or Kerberos principals) in accordance with the
site's grid resource usage policy. GUMS can be configured to generate static grid-mapfiles or to map users
dynamically as each job is submitted. If configured to generate a grid-mapfile, GUMS downloads the file
to each gatekeeper as scheduled or requested by an administrator via the GUMS Admin tool. If
configured to map users dynamically and individually, GUMS is called by the gatekeeper upon each job
submission.

Scenario: A job arrives at a site and gets routed to a particular gatekeeper. The job comes with a grid
credential (the proxy certificate), but it will need to run under a site-specific credential. Before the
gatekeeper can forward the job to the job manager, it (the gatekeeper) must obtain a site-specific
credential for the job. Where does it get the site credential? Depending on the configuration, it either
consults the GUMS-generated grid-mapfile or it calls the site's GUMS server and requests a site
credential. In the latter case, GUMS maps the the grid credential dynamically to the appropriate site
identity and credential, and sends the mapping information back to the gatekeeper. The gatekeeper now
forwards the job along with its site credential to the job manager.

Notice that GUMS doesn't perform authentication: it doesn't 'su', it doesn't retrieve Kerberos credentials.
It just tells the gatekeeper which site credentials the job should get. The gatekeeper is still in charge of
enforcing the site mapping established by GUMS. Technically speaking, GUMS is a Policy Decision
Point (PDP) not a Policy Enforcement Point (PEP).

Implementing Site Policies

GUMS runs at a grid site under the control of site administrators; it is a "site tool" as opposed to a "VO
tool". The users it maps may be affiliated with numerous VOs. The mappings in a site's GUMS
installation are defined in a single XML policy file. This file may contain multiple policies, and the
administrator can assign different policies to different groups of users. The administrator can also specify
different mappings on different hosts or different sets of hosts.

For example, say that there are two groups of users: all the users known to the ATLAS VOMS server,
and other ATLAS users who are already mapped to accounts taken from a site pool of accounts. For all
hosts 'atlas*.bnl.org’', an administrator could map the first set of users to a group account named

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.1 1S GUMS FOR YOU 2

'usatlas01', and let all the other users use the accounts to which they're already mapped. On another host
or set of hosts, there could be a different mapping.

GUMS is designed to be extensible so that it can address specific site requirements. All the GUMS policy
components (i.e., user group definition, mapping policies, and so on) are implementated via a few simple
interfaces which exist outside of GUMS. Thus a site administrator with very little knowledge of GUMS
itself can add external code to manipulate GUMS functionality or data, e.g, to tell GUMS how to map
credentials, or to pull GUMS data into a local storage system.

Components for the following functionalities are already implemented in GUMS:

* Retrieve membership information from a VO server such as LDAP or VOMS.

* Maintain a manual group definition (this is useful to handle special cases).

* Map groups of users to the same account (a group account).

* Map groups of users to an account pool, in which one account will be assigned to each user.
* Map groups of users according to the information present in NIS.

* Map groups of users according to a manual mapping definition.

The GUMS callout interface

The GUMS interface for the callout is being implemented according to standards discussed at GGF,
using the OSGA AuthZ interface with the SAML message format. The existence of this interface means
that any kind of service is able to contact GUMS: even though we are working on a GT2 gatekeeper
callout, the same service can be used for a GT4 service, or a different type of service altogether.

GUMS and other tools

It's possible to get confused between GUMS, VOMS, SAZ, LCMAPS and other siteAAA tools. See our
FAQ for a brief explanation of the differences between GUMS and these other tools.

The development of GUMS

GUMS was first designed by Rich Baker and Dantong Yu at BNL in the first half of 2003. A first
implementation was provided by Tomasz Wlodek and Dantong Yu. Gabriele Carcassi took over the
project in March 2004 and brought the system into full production at BNL in May 2004. Between June
and July 2004 the code was refactored to allow the business logic to be called either from the command
line or from a web application, opening the door to a web service implementation.

Current work is focused on a web application that would provide both a web interface for the
administrator and a web service that implements the OGSA AuthZ interface. This is being developed
within the VO Privilege Project , a joint project between USCMS and USATLAS. This interface
implements fine-grained authorization based on an extended grid proxy certificate.

GUMS in the future

The grid community, and especially the grid security groups, are moving toward a computing model in
which (1) a grid job would be able to access a service only through grid credentials and (2) a job would

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

http://computing.fnal.gov/docs/products/voprivilege/

1.1 1S GUMS FOR YOU 3

not be allowed to leave any trace of its passage (or any traces would subsequently be erased). These two
requirements would lessen the importance of site-specific credential mapping. The need to map to local
identities therefore might go away in the future. Currently, though, many site-specific authorization
decisions are still made using the username and uid, and GUMS provides a necessary function.

The following is an incomplete list of issues that will need to be resolved before local account mapping
becomes irrelevant:

* File access control. If file access for all inputs and outputs of a job were to go through an interface
with grid authorization, say an SRM, then whether a job was mapped to a patticular account wouldn't
affect file access privileges. As long as we use UNIX file systems directly for storage, local account
mappings are crucial.

* DPriority on a batch system. Many batch systems use uids and gids to determine submission rights to
queues and/or to determine priotities for users. Batch system interfaces that make decisions
based-only on grid credentials would be needed.

* Identification of running processes. The easiest way to track a process running on a host is to look at
the username under which it is running. We'd need a mechanism that associates a process id with a
grid identity.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.2

1.2 GUMS ARCHITECTURE 4

GUMS Architecture

GUMS Architecture and Workflow

This article is intended to describe GUMS in somewbat more detail than (ref other page). Here we provide information
about the components that make up GUMS, what it interfaces to and how, the workflow, and how it fits in the GRID
architecture for a number of scenarios. For further reading, see Transition to Role-based Assignment of Iocal User-1ds .

Mapping concepts

GUMS can generate mapping that gets transferred periodically to a gatekeeper with gums-host, which
generates a suitable grid-mapfile. Or GUMS can respond dynamically to individual requests for mapping
from a gatekeeper. In either case, users can be mapped to accounts in a variety of ways:

* map groups of users to shared group accounts,
* map users to pool accounts, one user per account, or
* map users to group accounts manually

The accounts themselves are created outside of GUMS. Particular accounts or ranges of accounts (e.g.,
xyz0000 to xyz9999) are then specified in the GUMS configuration file. The mapping policy as
implemented in this file may take into account the grid identity of the user and his/her VO only, or it can
accommodate extended attributes (implemented via voms-proxy-init) such as the uset's role and group
within the VO. Furthermore, different mapping policies may be implemented depending on the host
chosen to process the job.

Components used for mapping

GUMS stores information about users (e.g., theit DN and VO) and (if pool accounts are implemented)
the user-to-account mapping. GUMS can perform mapping in a variety of ways depending on the
requests it receives and the configuration file (also called a policy file) that governs it. The configuration
file addresses three aspects of mapping:

* Whete to store user and mapping data (the storage is referred to as "petsistence” in GUMS; the
interface to it is called a "persistence factory")

* Definitions of user groups and how they get mapped to accounts
* Definitions of user group mappings on various hosts or groups of hosts

A VO setvice (e.g., VOMS Admin or LDAP) must be available to provide user and VO information to
GUMS. GUMS downloads this information and stores it locally according to the persistence factory
that's configured. The persistent storage may be the GUMS-native MySQL database or a site-specific
storage service.

Mapping requests come from one or more gatekeepers.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

http://computing.fnal.gov/docs/products/voprivilege/documents/transition-to-privilege.html

1.2 GUMS ARCHITECTURE 5

The GUMS client tools are installed on the gatekeepers, and provide functionality for

mapping users to manually-managed group accounts
retrieving maps from GUMS server and creating a grid-mapfile

forcing GUMS server to update the user lists from the VO setrvers

Workflow

For configuration:

Admin creates accounts (the accounts must be available on the gatekeeper and the worker nodes)

Admin creates GUMS configuration file specifying which VO servers and which persistence (e.g.,
mysql) will be used

Admin configures the gatekeeper to either retrieve the grid-mapfile from GUMS or to use the
PRIMA module to connect to GUMS

GUMS reads the configuration file (the "rules") into memory.

GUMS consults the rules to find persistence factory information, and sets up connection to persistent
storage

GUMS contacts VO service and downloads grid id information for all users in VO; stores it in
g
persistence

For processing an individual mapping request (assuming only group accounts are to be used, no pool

accounts):

Gatekeeper sends request for mapping to GUMS
GUMS receives request from gatekeeper
GUMS looks in user table to verify that user is there

GUMS consults configuration file rules (in memory) to find out how to map user (in this case, it uses
only group accounts).

GUMS maps user to the first group account for which he or she is eligible

GUMS sends message out via web service to gatekeeper; message contains one of three responses:
Permission granted (send with "obligations"), Indeterminate (permission is not granted, but is not
denied either), or Denied (user is not valid).

For processing an individual mapping request (assuming pool accounts are to be used):

Gatekeeper sends request for mapping to GUMS

GUMS receives request from gatekeeper

GUMS looks in user table to verify that user is there

GUMS consults configuration file rules (in memory) to find out how to map user.

If user should be mapped to a pool account, GUMS checks the userGroupMapping table to see if
user is already mapped. If so, GUMS uses that mapping. If not, it creates a mapping and stores it in
the table.

GUMS sends message out via web service to gatekeeper: Permission granted (send with

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.2 GUMS ARCHITECTURE 6

"obligations"), Indeterminate (permission is not granted, but is not denied either), or Denied (user is
not valid).

GUMS in the grid architecture

First, let's look at the Grid3 system which did not use GUMS. Users run grid-proxy init to get credentials,
without contacting the VOMS server. Each gatekeeper at each site has to connect to VOMS
independently (e.g., via edg-mkgridmap) in order to create its static grid-mapfile. This is done periodically.
Note, as shown at bottom of image, that there is no support for centralized mapping at a site, account
pools, dynamic mappings, ot role/group-based mappings. The inverse map for accounting (i.c.,
user-to-VO mapping) is created manually.

Open Science Grid

Grid3 system

Gatekeeper

* centralized mapping

x account pool

*® ynamic mappings

= role/group based mappings

The next scenario shows GUMS implemented such that it sits between VOMS Admin and the client(s).
The gatekeeper does not implement a callout to GUMS. GUMS polls VOMS Admin periodically to
update its local list of users. The site may have only one GUMS server, in which case there would be only
one communication point to VOMS, thus enabling centralized mapping. All clients would access the
same information locally. (A site could deploy multiple GUMS servers, but would lose the centralized
mapping capability.) GUMS downloads mapping information to each gatekeeper: the GUMS host tool,
gums-host, replaces edg-mkgtridmap in this diagram, although edg-mkgridmap could still be used to
create the grid-mapfile; see the FAQ . The grid-mapfiles on all the gatekeeper can be made identical to
each other if they all use the same GUMS server (you can still have different maps for different
gatekeepers of group of gatekeepers). Gums-host also creates the inverse map for accounting. Mapping
to account pools is now available.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.2 GUMS ARCHITECTURE 7

Gatekeeper

¥ centralized mapping

¥ account poal

*® gynamic mappings

= role/group based mappings

The next image shows GUMS implemented in a legacy client scenario. Here we deploy the PRIMA
module (see the VO Privilege Project) on the gatekeepers in order to enable dynamic mapping. There are
no more grid-mapfiles. We continue to use the gums-host tool to generate the accounting map (if
needed), but this breaks dynamic mapping when account pools are being used. (Whenever GUMS is
asked to generate a map, it has to go through the whole policy, and assign an account for all the different
possibilities. Therefore, accounts will be assigned to everybody beforehand (when generating the map)
instead of when the individual request comes in.)

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

http://computing.fnal.gov/docs/products/voprivilege/

1.2 GUMS ARCHITECTURE 8

— . |grid3-user...txt

¥ centralized mapping

¥" account pool

¥{x dynamic mappings (broken by accounting)
x rolefgroup based mappings

The next image shows GUMS implemented in a full support scenatio. This is similar to the previous
scenario except that the user now runs voms-proxy-init which VOMS uses to produce an extended proxy
with role/group information. This enables GUMS to produce role/group-based mappings.

We continue to use the gums-host tool to generate the accounting map if needed, but this breaks
dynamic mapping when account pools are being used, as discussed above.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.2 GUMS ARCHITECTURE

—» grid3-user...txt

¥ Centralized mapping

¥ account pool

¥ /= tynamic mappings (hroken by accounting)
¥ rolefgroup based mappings

The next image shows a legacy server scenatio. You can use voms-proxy-init, but you can't take

advantage of its extended proxy features. You're back to having no support for any of the four items

listed at bottom.

©2003 BNL SITEAAA -

ALL RIGHTS RESERVED

1.2 GUMS ARCHITECTURE 10

S

*ﬁ-..__________,_.i‘-

Open Science Grid

Legacy server scenario

Execution site f

Gatekeeper

x centralized mapping

x gccount pool

x (ynamic mappings

= rolefgroup hased mappings

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

13

1.3 HOW TO: QUICK INSTALLATION 11

How to: quick installation

HOW TO: GUMS Service quick-start installation

This article describes how to quickly install a GUMS service, without going through many of the details. As of GUMS
1.0.0, the preferred way to install GUMS will be V' D'T. You should use this guide only if you need to install GUMS
without using VDT (i.e. when you need the really latest version).

Preparing java

GUMS is written in java, and requites java to be installed to run. Be sure it is installed in your $PATH.
Try running:

[root @uns root]# java -version

java version "1.4.2_04"

Java(TM 2 Runtinme Environment, Standard Edition (build 1.4.2_04-b05)
Java Hot Spot (TM) Cient VM (build 1.4.2_04-b05, m xed node)

If you do not have java installed, go to http://java.sun.com and follow the instructions to get the latest
version. Then add java to $PATH.

Preparing the certificate directory

GUMS will need the GRID certificate for the host and the certificate directories in place. Easiest way: use
VDT; but you are not, so you are on your own here.

Prepare the database

You will need a mysql server, with version 4.0.18 or greater installed. You can either install one from
scratch (follow the instruction on mysql's site) or you can use an installation you have ready. You'll need
root password.

Preparing Tomcat + EGEE security

The GUMS service will require a web server container, configured to use SSL with Globus proxy
certificates. You will also need Xerces 2.5.0 in the common/endorsed directory. If you do not know what
that means, just grab the already packaged Tomcat from the download page and install it.

* Grab the tarball from the download section [root@gums root]# cd /opt/ [root@gums opt]# wget
http://grid.racf.bnl.gov/GUMS/dist/tomcat-5.0.28-egeesec.tar.gz .

* Untar it [root@gums opt]# tar -xzvf tomcat-5.0.28-egeesec.tar.gz

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

http://java.sun.com

1.3 HOW TO: QUICK INSTALLATION 12

* Review the configuration of the server [root@gums opt]# vi tomcat-5.0.28-egeesec/ conf/server.xml

NOTE: if you need to change the configuration for the service certificate, or the port on which the
setvice runs, you can edit the fTOMCAT_HOME/conf/server.xml tomcat configuration file. Find
the section:

<Connector port="8443" maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
enableLookups="false" disableUploadTimeout="true" acceptCount="100" debug="0"
scheme="https" secure="true"
sSLImplementation="org.glite.security.trustmanager.tomcat. TMSSI Implementation"
ssICAFiles="/etc/grid-security/ certificates /*.0" ctlFiles="/etc/gtid-security/ certificates/*.t0"
sslCertFile="/etc/grid-security /hostcert.pem" sslKey="/etc/grid-security /hostkey.pem"
log4jConfFile="/opt/tomcat-5.0.28-egeesec/conf/log4j-trustmanager.properties"

clientAuth="true" sslProtocol="TLS" />

If you installed in a different directory than /opt/tomcat-5.0.28-egeesec, change the location of
log4jConftFile. To change the location of the service certificate or the CAs, simply change the ssIXxx
and crlFiles properties. To change the port, change the port property.

* Start the server [root@gums opt]# tomcat-5.0.28-egeesec/bin/catalina.sh start

* Connect to the server through a web browser with a Grid certificate installed, to check that is indeed
running.

Install the service

The service itself is a standard java web application. Grab the latest gums-service tarball file from the dist
directory , and unpack it.

* Grab the latest build and install [root@gums root]# cd /opt/ [root@gums opt|# wget
http://gtid.racf.bnl.gov/GUMS/dist/gums-service-1.0.0dev-latest.tar.gz . [root@gums opt|# tar
-xzvf gums-service-1.0.0dev-latest.tar.gz

* You will need to create the database. You can do by running the setupDatabase script
giving[root@gums opt]# cd gums-service/sbin/ [root@gums sbin]|# ./setupDatabase Usage:
./setupDatabase [mysql user for GUMS] [GUMS setver host] [GUMS mysqgl password] Examples:
./setupDatabase gums gums.mysite.com secret This will make mysql authenticate as root with a
password (-p), create a 'gums' user with password 'secret’ authorized to connect from
'gums.mysite.com'. [root@gums sbin]# ./setupDatabase gums gums.mysite.com secret

The script will only run on localhost. If you need to create db on another server, or with different
account then root, edit setupDatabase:

[toot@gums sbin]# cat setupDatabase #!/bin/sh ... MYSQLPARAM="-p" ..

* Now add yourself to admins:[root@gums sbin]# ./addAdmin Adds an admin in the GUMS database
on localhost Usage: ./addAdmin [DN for administrator] Example: ./addAdmin
"/DC=org/DC=doegrids/ OU=People/ CN=Gabriele Carcassi 12345" [root@gums sbin]#
./addAdmin "/DC=org/DC=doegrids/OU=People/CN=Your Self 83753"

* Last thing, we need to tell tomcat to run GUMS: [root@gums sbin]# cd ../.. [foot@gums opt]# ln -s
../ ../ gums-setvice/var/war tomcat-5.0.28-egeesec/webapps/gums

* Get a browser in which you have your grid cettificate, go to: https://<machine>:<port>/gums : you
should see the GUMS web interface. You might need to wait a bit for tomcat to realize the gums

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

http://grid.racf.bnl.gov/GUMS/dist/
http://grid.racf.bnl.gov/GUMS/dist/
https://%3Cmachine%3E:%3Cport%3E/gums

1.3 HOW TO: QUICK INSTALLATION 13

application was installed.
* Try generating the mapfile for the host "testing.site.com", and it should give you some response.

* [Optional] Another thing you can do is activate the e-mail forwarding of the log in case of error. Edit
/opt/gums-service/webapps/gums/WEB-INF/ classes/log4j.propetties, following the instructions
within the file. Fill in the appropriate information, restart the service, and whenever GUMS will
encounter an error, an e-mail will be sent to the address you specified.

* [Optional] GUMS provides a log suitable for cybersecurity in the
/opt/gums-service/logs/gums-site-admin.log. The same log can be configured to use syslogd. Please
refer to the logging documentation for more details.

* [Optional] One of the things GUMS does, is downloading the information from the VO servers
every 12 hours. The clock will start at the first access to GUMS functionalities after each restart (i.e.
first time you actually generate a mapfile or map a user). The time between updates can be set. The
easiest way to do it, is to edit the /opt/gums-service/webapps/gums/WEB-INF/web.xml file.
<env-entry> <env-entry-name>updateGroupsMinutes</env-entry-name>
<env-entry-type>java.lang Integer</env-entry-type> <env-entry-value>720</env-entry-value>
</env-entry>Change the entry value to the number of mintues you prefer.

Congratulations: the server is up and running.

Installing the client

To generate maps (grid-mapfile, grid3-user-vo.txt) or to administer GUMS (i.e. create account pools,
manage manual groups, ...) you will need to install GUMS Client which gives includes all the command
line tools.

Grab the latest rpm file from the dist directory : it will install by default in /opt/gums, but the package is
relocatable, so you can install it wherever you want.

* Grab the latest build and install [root@gums root]# wget
http://gtid.racf.bnl.gov/GUMS/dist/gums-admin-1.0.0dev-latest.noarch.rpm . [root@gums root]#
rpm -Uvh gums-admin-1.0.0dev-latest.noarch.rpm

* Check that GUMS was installed correctly[root@gums root]# cd /opt/gums/bin/ [root@gums bin]|#
./gums usage: gums command [command-options] Commands: generateGrid3UserVoMap -
Generate grid3-user-vo-map.txt for a given host. generateGridMapfile - Generate grid-mapfile for a
given host. manualGroup-add - Includes a DN in a group. manualGroup-remove - Removes a DN
from a group. manualMapping-add - Adds a DN-to-username in a mapping. manualMapping-remove
- Removes a DN from a mapping. mapUser - Local credential used for a particular user.
mapfileCache-refresh - Regerates mapfiles in the cache. updateGroups - Contact VO servers and
retrieve user lists. For help on any command: gums command --help

Now, you need to tell gums-admin where is your GUMS server.

[toot@gums bin]# cat ../etc/gums-client.properties

gums.location=https:/ /localhost:8443/gums/services/ GUMSAdmin

gums.authz=https:/ /localhost:8443 / gums/services/ GUMS AuthorizationServicePort

Replace the localhost with the full machine name (even if you installed GUMS Admin on the same
machine).

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

http://grid.racf.bnl.gov/GUMS/dist/

1.3 HOW TO: QUICK INSTALLATION 14

[toot@gums bin]# vi ../etc/gums-client.properties [root@gums bin]# cat

../ etc/gums-client.properties

gums.location=https://gums.mysite.com:8443/gums/services/ GUMSAdmin
gums.authz=https://gums.mysite.com:8443/gums/services/ GUMS AuthorizationServicePort

You might need to set the permission correctly: GUMS can be run only by admins and, due to the file
privileges on the logs and configuration files, you will need to set the username and group
accordingly. You will need to change permission on the directory:

[root@gums bin]# chown username:groupname .. -R

where groupname is a group that contain all the admins.

Test the service by generating a mapfile at the command line

[root@gums bin]# su - username [username(@gums bin|# grid-proxy-init [username@gums bin|#
./gums generateGridMapfile testing.test.gov

You should get the same response you got from the web server.

* You will have noticed that there are two command in the bin directory, plus a cron sctipt: gums is
meant to be run by an admin, and uses your proxy; gums-host and gums-host-cron are meant to be
run using the host credentials, and they have limited functionalities (retrieve maps and mappings
only). To make GUMS generate the maps periodically, just link the cron script in /etc/cron.houtly.

Congratulations you installed GUMS Admin. To make it actually useful, now you need to go back on the
server and write an XML policy file. Please refer to the rest of the GUMS documentation. As an example
of configuration, this is a configuration file suitable for OSG:

<gun’S>
<per si st enceFactori es>
<persi st enceFact ory nanme=' nysql'
cl assNanme=' gov. bnl . guns. M\ySQLPer si st enceFactory' jdbcDriver='"com nysql.jdbc.Driver'
jdbcUrl =" jdbc: nmysql ://*your_server*/GUVS_0_7' user='guns' password='*password*’
aut oReconnect ='true' />
</ persi st enceFactori es>
<adm nUser Group cl assNane=' gov. bnl . guns. Manual User G oup’
persi stenceFactory="nysql' nane="adm ns' />
<gr oupMappi ngs>
<gr oupMappi ng nane=' grase' accountingVo='grase' accountingDesc=' GRASE >
<user Group cl assNane=' gov. bnl . guns. VOVEG oup’
url =" https://acdc. ccr. buffal 0. edu: 8443/ edg- vons- adm n- GCRASE/ ser vi ces/ VOVSAdm n'
persi st enceFact ory="nysql"'
name=' grase' voG oup="/GRASE/ gri d3"
sslCertfile="/etc/grid-security/hostcert.pemn
ssl Key='/etc/grid-security/hostkey. pem ignoreFQAN="true"/>
<account Mappi ng cl assNanme=' gov. bnl . guns. G- oupAccount Mapper' groupNane=' grase'
/>
</ gr oupMappi ng>
<gr oupMappi ng nane=' gadu' accounti ngVo='gadu' accounti ngDesc=' GADU >
<user Group cl assNane=' gov. bnl . guns. VOVEG oup'
url ="https://cnsvo. fnal . gov: 8443/ edg- vons- adm n/ gadu/ ser vi ces/ VOVSAdm n'
persi st enceFact ory="nysql"'
name=' gadu' voG oup="/gadu/gri d3users"

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.3 HOW TO: QUICK INSTALLATION

ssl Certfile="/etc/grid-security/hostcert. pen
ssl Key='/etc/grid-security/hostkey. pem ignoreFQAN="true"/>
<account Mappi ng cl assNane=' gov. bnl . guns. G oupAccount Mapper' groupNane=' gadu’
/>
</ gr oupMappi ng>
<gr oupMappi ng nane='usatl as' accountingVo='usatlas' accounti ngDesc=' ATLAS >
<user G- oup cl assNanme=' gov. bnl . guns. VOVEG oup’
url ="https://cnmesrv08. f nal . gov: 8443/ edg- vons- adni n/ at | as/ servi ces/ VOVSAdmi n'
persi st enceFact ory='nysql"'
nanme=' usatl as' voG oup="/atl as/usatl as"
ssl Certfile="/etc/grid-security/hostcert.pen
ssl Key='/etc/grid-security/hostkey. pem ignoreFQAN="true"/>
<account Mappi ng cl assNane=' gov. bnl . guns. G oupAccount Mapper"'
gr oupNanme=' usat| asl' />
</ gr oupMappi ng>
<gr oupMappi ng nanme='uscns' accountingVo='uscns' accountingDesc='CVS >
<user Group cl assNane=' gov. bnl . guns. VOVEG oup’
url ="https://cnsvo. fnal . gov: 8443/ edg- vons- adm n/ uscns/ servi ces/ VOVSAdm n'
persi st enceFact ory="nysqgl"'
name=' uscns' voG oup="/uscns/grid3_users"
ssl Certfile="/etc/grid-security/hostcert.pemn
ssl Key='/etc/grid-security/hostkey.pem ignoreFQAN="true"/>
<account Mappi ng cl assNane=' gov. bnl . guns. G oupAccount Mapper"'
gr oupNane=' uscns01' />
</ gr oupMappi ng>
<gr oupMappi ng nane='ivdgl' accountingVo="ivdgl' accountingDesc="iVDgL' >
<user Group cl assNane=' gov. bnl . guns. VOVEG oup'
url ="https://pkiO.indi ana. edu: 8443/ edg- vons- admi n/ g3dev/ ser vi ces/ VOVBAdn n'
persi st enceFact ory="'nysql"'
nane='ivdgl' voG oup="/g3dev/groupl”
ssl Certfile="/etc/grid-security/hostcert. pen
ssl Key='/etc/grid-security/hostkey. pem ignoreFQAN="true"/>
<account Mappi ng cl assNane=' gov. bnl . guns. G- oupAccount Mapper' groupName="ivdgl"'
/>
</ gr oupMappi ng>
<gr oupMappi ng nane='sdss' accountingVo='sdss' accounti ngDesc=' SDSS' >
<user G- oup cl assNanme=' gov. bnl . guns. VOVEG oup’
url =" https://hotdog63. f nal . gov: 8443/ edg- vons- adni n- sdss/ ser vi ces/ VOVSAdm n'
persi st enceFact ory='nysql"'
nane=' sdss' voG oup="/sdss/grid3"
ssl Certfile="/etc/grid-security/hostcert.pen
ssl Key='/etc/grid-security/hostkey. pem ignoreFQAN="true"/>
<account Mappi ng cl assNane=' gov. bnl . guns. G oupAccount Mapper' groupNane=' sdss'
/>
</ gr oupMappi ng>
<gr oupMappi ng nanme=' cdf' accountingVo='cdf' accountingDesc=' CDF' >
<user Group cl assNane=' gov. bnl . guns. VOVEG oup’
url ="https://testbed008. cnaf.infn.it: 8443/ edg-vons-adm n/cdf/servi ces/ VOVBAdm n'
persi st enceFact ory="nysql"'
name=' cdf' sslCertfile="/etc/grid-security/hostcert.pem
ssl Key='/etc/grid-security/hostkey. pem ignoreFQAN="true"/>
<account Mappi ng cl assNane=' gov. bnl . guns. G oupAccount Mapper' groupNane='cdf' />
</ gr oupMappi ng>
</ gr oupMappi ngs>
<host Gr oups>
<host Group cl assNanme=' gov. bnl . guns. W dcar dHost G oup'
Wil dcard="* * * * * * % * * *' groups='grase, gadu, usatl as, uscns, i vdgl , sdss, cdf' />
</ host Gr oups>
</ guns>

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.3 HOW TO: QUICK INSTALLATION

Problems?

If you have any problem, feel free to contact GUMS developers.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

16

1.4 INSTALLATION 17

14 Installation

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

141

1.4.1 QUICK INSTALLATION 18

Quick installation

HOW TO: GUMS Service quick-start installation

This article describes how to quickly install a GUMS service, without going through many of the details. As of GUMS
1.0.0, the preferred way to install GUMS will be V' D'T. You should use this guide only if you need to install GUMS

without using VDT (i.e. when you need the really latest version).

Preparing java

GUMS is written in java, and requites java to be installed to run. Be sure it is installed in your $PATH.
Try running:

[root @uns root]# java -version

java version "1.4.2_04"

Java(TM 2 Runtinme Environment, Standard Edition (build 1.4.2_04-b05)
Java Hot Spot (TM) Cient VM (build 1.4.2_04-b05, m xed node)

If you do not have java installed, go to http://java.sun.com and follow the instructions to get the latest
version. Then add java to $PATH.

Preparing the certificate directory

GUMS will need the GRID certificate for the host and the certificate directories in place. Easiest way: use
VDT; but you are not, so you are on your own here.

Prepare the database

You will need a mysql server, with version 4.0.18 or greater installed. You can either install one from
scratch (follow the instruction on mysql's site) or you can use an installation you have ready. You'll need
root password.

Preparing Tomcat + EGEE security

The GUMS service will require a web server container, configured to use SSL with Globus proxy
certificates. You will also need Xerces 2.5.0 in the common/endorsed directory. If you do not know what
that means, just grab the already packaged Tomcat from the download page and install it.

* Grab the tarball from the download section [root@gums root]# cd /opt/ [root@gums opt]# wget
http://grid.racf.bnl.gov/GUMS/dist/tomcat-5.0.28-egeesec.tar.gz .

* Untar it [root@gums opt]# tar -xzvf tomcat-5.0.28-egeesec.tar.gz

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

http://java.sun.com

1.4.1 QUICK INSTALLATION 19

* Review the configuration of the server [root@gums opt]# vi tomcat-5.0.28-egeesec/ conf/server.xml

NOTE: if you need to change the configuration for the service certificate, or the port on which the
setvice runs, you can edit the fTOMCAT_HOME/conf/server.xml tomcat configuration file. Find
the section:

<Connector port="8443" maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
enableLookups="false" disableUploadTimeout="true" acceptCount="100" debug="0"
scheme="https" secure="true"
sSLImplementation="org.glite.security.trustmanager.tomcat. TMSSI Implementation"
ssICAFiles="/etc/grid-security/ certificates /*.0" ctlFiles="/etc/gtid-security/ certificates/*.t0"
sslCertFile="/etc/grid-security /hostcert.pem" sslKey="/etc/grid-security /hostkey.pem"
log4jConfFile="/opt/tomcat-5.0.28-egeesec/conf/log4j-trustmanager.properties"

clientAuth="true" sslProtocol="TLS" />

If you installed in a different directory than /opt/tomcat-5.0.28-egeesec, change the location of
log4jConftFile. To change the location of the service certificate or the CAs, simply change the ssIXxx
and crlFiles properties. To change the port, change the port property.

* Start the server [root@gums opt]# tomcat-5.0.28-egeesec/bin/catalina.sh start

* Connect to the server through a web browser with a Grid certificate installed, to check that is indeed
running.

Install the service

The service itself is a standard java web application. Grab the latest gums-service tarball file from the dist
directory , and unpack it.

* Grab the latest build and install [root@gums root]# cd /opt/ [root@gums opt|# wget
http://gtid.racf.bnl.gov/GUMS/dist/gums-service-1.0.0dev-latest.tar.gz . [root@gums opt|# tar
-xzvf gums-service-1.0.0dev-latest.tar.gz

* You will need to create the database. You can do by running the setupDatabase script
giving[root@gums opt]# cd gums-service/sbin/ [root@gums sbin]|# ./setupDatabase Usage:
./setupDatabase [mysql user for GUMS] [GUMS setver host] [GUMS mysqgl password] Examples:
./setupDatabase gums gums.mysite.com secret This will make mysql authenticate as root with a
password (-p), create a 'gums' user with password 'secret’ authorized to connect from
'gums.mysite.com'. [root@gums sbin]# ./setupDatabase gums gums.mysite.com secret

The script will only run on localhost. If you need to create db on another server, or with different
account then root, edit setupDatabase:

[toot@gums sbin]# cat setupDatabase #!/bin/sh ... MYSQLPARAM="-p" ..

* Now add yourself to admins:[root@gums sbin]# ./addAdmin Adds an admin in the GUMS database
on localhost Usage: ./addAdmin [DN for administrator] Example: ./addAdmin
"/DC=org/DC=doegrids/ OU=People/ CN=Gabriele Carcassi 12345" [root@gums sbin]#
./addAdmin "/DC=org/DC=doegrids/OU=People/CN=Your Self 83753"

* Last thing, we need to tell tomcat to run GUMS: [root@gums sbin]# cd ../.. [foot@gums opt]# ln -s
../ ../ gums-setvice/var/war tomcat-5.0.28-egeesec/webapps/gums

* Get a browser in which you have your grid cettificate, go to: https://<machine>:<port>/gums : you
should see the GUMS web interface. You might need to wait a bit for tomcat to realize the gums

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

http://grid.racf.bnl.gov/GUMS/dist/
http://grid.racf.bnl.gov/GUMS/dist/
https://%3Cmachine%3E:%3Cport%3E/gums

1.4.1 QUICK INSTALLATION 20

application was installed.
* Try generating the mapfile for the host "testing.site.com", and it should give you some response.

* [Optional] Another thing you can do is activate the e-mail forwarding of the log in case of error. Edit
/opt/gums-service/webapps/gums/WEB-INF/ classes/log4j.propetties, following the instructions
within the file. Fill in the appropriate information, restart the service, and whenever GUMS will
encounter an error, an e-mail will be sent to the address you specified.

* [Optional] GUMS provides a log suitable for cybersecurity in the
/opt/gums-service/logs/gums-site-admin.log. The same log can be configured to use syslogd. Please
refer to the logging documentation for more details.

* [Optional] One of the things GUMS does, is downloading the information from the VO servers
every 12 hours. The clock will start at the first access to GUMS functionalities after each restart (i.e.
first time you actually generate a mapfile or map a user). The time between updates can be set. The
easiest way to do it, is to edit the /opt/gums-service/webapps/gums/WEB-INF/web.xml file.
<env-entry> <env-entry-name>updateGroupsMinutes</env-entry-name>
<env-entry-type>java.lang Integer</env-entry-type> <env-entry-value>720</env-entry-value>
</env-entry>Change the entry value to the number of mintues you prefer.

Congratulations: the server is up and running.

Installing the client

To generate maps (grid-mapfile, grid3-user-vo.txt) or to administer GUMS (i.e. create account pools,
manage manual groups, ...) you will need to install GUMS Client which gives includes all the command
line tools.

Grab the latest rpm file from the dist directory : it will install by default in /opt/gums, but the package is
relocatable, so you can install it wherever you want.

* Grab the latest build and install [root@gums root]# wget
http://gtid.racf.bnl.gov/GUMS/dist/gums-admin-1.0.0dev-latest.noarch.rpm . [root@gums root]#
rpm -Uvh gums-admin-1.0.0dev-latest.noarch.rpm

* Check that GUMS was installed correctly[root@gums root]# cd /opt/gums/bin/ [root@gums bin]|#
./gums usage: gums command [command-options] Commands: generateGrid3UserVoMap -
Generate grid3-user-vo-map.txt for a given host. generateGridMapfile - Generate grid-mapfile for a
given host. manualGroup-add - Includes a DN in a group. manualGroup-remove - Removes a DN
from a group. manualMapping-add - Adds a DN-to-username in a mapping. manualMapping-remove
- Removes a DN from a mapping. mapUser - Local credential used for a particular user.
mapfileCache-refresh - Regerates mapfiles in the cache. updateGroups - Contact VO servers and
retrieve user lists. For help on any command: gums command --help

Now, you need to tell gums-admin where is your GUMS server.

[toot@gums bin]# cat ../etc/gums-client.properties

gums.location=https:/ /localhost:8443/gums/services/ GUMSAdmin

gums.authz=https:/ /localhost:8443 / gums/services/ GUMS AuthorizationServicePort

Replace the localhost with the full machine name (even if you installed GUMS Admin on the same
machine).

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

http://grid.racf.bnl.gov/GUMS/dist/

1.4.1 QUICK INSTALLATION 21

[toot@gums bin]# vi ../etc/gums-client.properties [root@gums bin]# cat

../ etc/gums-client.properties

gums.location=https://gums.mysite.com:8443/gums/services/ GUMSAdmin
gums.authz=https://gums.mysite.com:8443/gums/services/ GUMS AuthorizationServicePort

You might need to set the permission correctly: GUMS can be run only by admins and, due to the file
privileges on the logs and configuration files, you will need to set the username and group
accordingly. You will need to change permission on the directory:

[root@gums bin]# chown username:groupname .. -R

where groupname is a group that contain all the admins.

Test the service by generating a mapfile at the command line

[root@gums bin]# su - username [username(@gums bin|# grid-proxy-init [username@gums bin|#
./gums generateGridMapfile testing.test.gov

You should get the same response you got from the web server.

* You will have noticed that there are two command in the bin directory, plus a cron sctipt: gums is
meant to be run by an admin, and uses your proxy; gums-host and gums-host-cron are meant to be
run using the host credentials, and they have limited functionalities (retrieve maps and mappings
only). To make GUMS generate the maps periodically, just link the cron script in /etc/cron.houtly.

Congratulations you installed GUMS Admin. To make it actually useful, now you need to go back on the
server and write an XML policy file. Please refer to the rest of the GUMS documentation. As an example
of configuration, this is a configuration file suitable for OSG:

<gun’S>
<per si st enceFactori es>
<persi st enceFact ory nanme=' nysql'
cl assNanme=' gov. bnl . guns. M\ySQLPer si st enceFactory' jdbcDriver='"com nysql.jdbc.Driver'
jdbcUrl =" jdbc: nmysql ://*your_server*/GUVS_0_7' user='guns' password='*password*’
aut oReconnect ='true' />
</ persi st enceFactori es>
<adm nUser Group cl assNane=' gov. bnl . guns. Manual User G oup’
persi stenceFactory="nysql' nane="adm ns' />
<gr oupMappi ngs>
<gr oupMappi ng nane=' grase' accountingVo='grase' accountingDesc=' GRASE >
<user Group cl assNane=' gov. bnl . guns. VOVEG oup’
url =" https://acdc. ccr. buffal 0. edu: 8443/ edg- vons- adm n- GCRASE/ ser vi ces/ VOVSAdm n'
persi st enceFact ory="nysql"'
name=' grase' voG oup="/GRASE/ gri d3"
sslCertfile="/etc/grid-security/hostcert.pemn
ssl Key='/etc/grid-security/hostkey. pem ignoreFQAN="true"/>
<account Mappi ng cl assNanme=' gov. bnl . guns. G- oupAccount Mapper' groupNane=' grase'
/>
</ gr oupMappi ng>
<gr oupMappi ng nane=' gadu' accounti ngVo='gadu' accounti ngDesc=' GADU >
<user Group cl assNane=' gov. bnl . guns. VOVEG oup'
url ="https://cnsvo. fnal . gov: 8443/ edg- vons- adm n/ gadu/ ser vi ces/ VOVSAdm n'
persi st enceFact ory="nysql"'
name=' gadu' voG oup="/gadu/gri d3users"

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.4.1 QUICK INSTALLATION

ssl Certfile="/etc/grid-security/hostcert. pen
ssl Key='/etc/grid-security/hostkey. pem ignoreFQAN="true"/>
<account Mappi ng cl assNane=' gov. bnl . guns. G oupAccount Mapper' groupNane=' gadu’
/>
</ gr oupMappi ng>
<gr oupMappi ng nane='usatl as' accountingVo='usatlas' accounti ngDesc=' ATLAS >
<user G- oup cl assNanme=' gov. bnl . guns. VOVEG oup’
url ="https://cnmesrv08. f nal . gov: 8443/ edg- vons- adni n/ at | as/ servi ces/ VOVSAdmi n'
persi st enceFact ory='nysql"'
nanme=' usatl as' voG oup="/atl as/usatl as"
ssl Certfile="/etc/grid-security/hostcert.pen
ssl Key='/etc/grid-security/hostkey. pem ignoreFQAN="true"/>
<account Mappi ng cl assNane=' gov. bnl . guns. G oupAccount Mapper"'
gr oupNanme=' usat| asl' />
</ gr oupMappi ng>
<gr oupMappi ng nanme='uscns' accountingVo='uscns' accountingDesc='CVS >
<user Group cl assNane=' gov. bnl . guns. VOVEG oup’
url ="https://cnsvo. fnal . gov: 8443/ edg- vons- adm n/ uscns/ servi ces/ VOVSAdm n'
persi st enceFact ory="nysqgl"'
name=' uscns' voG oup="/uscns/grid3_users"
ssl Certfile="/etc/grid-security/hostcert.pemn
ssl Key='/etc/grid-security/hostkey.pem ignoreFQAN="true"/>
<account Mappi ng cl assNane=' gov. bnl . guns. G oupAccount Mapper"'
gr oupNane=' uscns01' />
</ gr oupMappi ng>
<gr oupMappi ng nane='ivdgl' accountingVo="ivdgl' accountingDesc="iVDgL' >
<user Group cl assNane=' gov. bnl . guns. VOVEG oup'
url ="https://pkiO.indi ana. edu: 8443/ edg- vons- admi n/ g3dev/ ser vi ces/ VOVBAdn n'
persi st enceFact ory="'nysql"'
nane='ivdgl' voG oup="/g3dev/groupl”
ssl Certfile="/etc/grid-security/hostcert. pen
ssl Key='/etc/grid-security/hostkey. pem ignoreFQAN="true"/>
<account Mappi ng cl assNane=' gov. bnl . guns. G- oupAccount Mapper' groupName="ivdgl"'
/>
</ gr oupMappi ng>
<gr oupMappi ng nane='sdss' accountingVo='sdss' accounti ngDesc=' SDSS' >
<user G- oup cl assNanme=' gov. bnl . guns. VOVEG oup’
url =" https://hotdog63. f nal . gov: 8443/ edg- vons- adni n- sdss/ ser vi ces/ VOVSAdm n'
persi st enceFact ory='nysql"'
nane=' sdss' voG oup="/sdss/grid3"
ssl Certfile="/etc/grid-security/hostcert.pen
ssl Key='/etc/grid-security/hostkey. pem ignoreFQAN="true"/>
<account Mappi ng cl assNane=' gov. bnl . guns. G oupAccount Mapper' groupNane=' sdss'
/>
</ gr oupMappi ng>
<gr oupMappi ng nanme=' cdf' accountingVo='cdf' accountingDesc=' CDF' >
<user Group cl assNane=' gov. bnl . guns. VOVEG oup’
url ="https://testbed008. cnaf.infn.it: 8443/ edg-vons-adm n/cdf/servi ces/ VOVBAdm n'
persi st enceFact ory="nysql"'
name=' cdf' sslCertfile="/etc/grid-security/hostcert.pem
ssl Key='/etc/grid-security/hostkey. pem ignoreFQAN="true"/>
<account Mappi ng cl assNane=' gov. bnl . guns. G oupAccount Mapper' groupNane='cdf' />
</ gr oupMappi ng>
</ gr oupMappi ngs>
<host Gr oups>
<host Group cl assNanme=' gov. bnl . guns. W dcar dHost G oup'
Wil dcard="* * * * * * % * * *' groups='grase, gadu, usatl as, uscns, i vdgl , sdss, cdf' />
</ host Gr oups>
</ guns>

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.4.1 QUICK INSTALLATION

Problems?

If you have any problem, feel free to contact GUMS developers.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

23

1.4.2

1.4.2 INSTALLATION GUIDE 24

Installation guide

GUMS installation and walkthrough

This article describes all the components of GUMS and all the installation details: it is not meant as a quick installation
guide. Please, refer to the quick installation guide if you prefer to get up and running and need the
command line. This guide assumes you are familiar with SQL, a bit of Java, Tomcat, ..., and that you are not
interested in the exact command lines to write. 1t's meant for giving all the pieces of the puzzle so that an admin is
comfortable with what GUMS does, and bas an idea where to put his hands in case of problems.

The pieces
Before beginning, we describe what components are there in GUMS.

* The service: the main component is a web application that consists of a Web Setvice interface (WS)
and a Web Uuser Interface (WebUI). The same web application contains web pages for the admin to
use through a browser, and a Web Service door that allows command line tools and other services to
use GUMS functionalities. The Web Service part is a SOAP service built on Apache Axis. The web
application is secured through SSL, that is also both WS and WebUI have the same transport level
security. If GUMS is installed on a server without SSL, though part of the WebUI will be available, it
won't proceed with any operations. The authorization is internal to GUMS: in the configuration you
define a group of admins, who have full access; Services will have only read access to their mappings
(i.e. map user or generate maps).

The service was developed and tested on a Tomcat 5.0.28 + EGEE security installation, though it
should work on any J2EE compliant web servers with SSL.

* The persistence layer: GUMS will need a place to store some temporary data, for example it caches
the information it reads from the VO server, and some critical data, such as manual mappings the
admin might want to define. At this time, the whole persistence layer is based on a MySQL server,
though we plan to allow any RDBMS (the persistence layer needs some refining before it can be used
24/7, as part of that refining we will be able to use almost any JDBC compliant database). The idea,
though, is that a site might want to integrate this part within their infrastructure. For example, at BNL
we want to store all the critical data on our LDAP servers, which already contain most of the user
accounts information. To integrate one needs only to implement a couple of classes and change the
configuration file, all of which can be done at runtime. The suggestion is to evaluate GUMS on a
MySQL back-end, and then, if desired, plan the integration.

* The admin tools: this is a set of command line tools to administer GUMS. They connect to the WS to
perform the different tasks. All operation will be carried with the admin credentials, who will use the
GRID proxy beforehand. All this activity will be logged on the server. Being the admin tools are a
client to GUMS, they can be installed on the same host where GUMS is running or on a different
host.

* The host tools: this is a set of command line tools to be installed on a generic host to retrieve the
maps (i.e. grid-mapfile et al) , or to test the connectivity for the callout. All operation must be carried

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.4.2 INSTALLATION GUIDE 25

with the host/service credentials, that is the certificate and private key. The host will be allowed only
to retrieve information about its mappings. The CN of the host certificate and the hostname will be
used, and must match to the GUMS setup. That is, for a host gatekeeper.mysite.com, with a
CN=gatekeeper.mysite.com, GUMS will have to have a map for the host with the same name.

GUMS can also run in different modes, described in the GUMS modes of operation section. They are
essentially variations in the user of GUMS. We won't talk extensively about those, as they are getting less
relevant now, as we get closer and closer to GUMS 1.0. We will mention a few things, though, that affect
the setup. It will be indicated by a "Different mode note:" warning.

The installation steps are:

* Preparing the persistance layer backend (i.e. MySQL for the standard installation)
* Installing the service and setting up a policy
* Installing the admin tools

* Installing the host tools on the target gatekeepers

Root vs non-root

GUMS can be installed as both root and non-root. The only issue is the host certificate: GUMS must be
able to access a host/setvice certificate with its private key for authentication. Generally, it is located in
/etc/grid-mapfile/hostcert.pem with root permissions. One could either set those permissions to a
different user, or create another copy for gums. Such as /etc/grid-security/gumscert.pem.

Firewall and security considerations

GUMS doesn't require any pott to be installed outside the firewall. The only requirement is to have an
inbound TCP port opened on the GUMS server (default 8443), and an outbound port from all
gatekeeper to that GUMS port.

All GUMS requests are over SSL. Grid certificates are used for authentication and authorization.

All access to GUMS is logged. Logs can be configured to use syslogd, which can be used to forward the
logs to the cybersecurity department of the site.

Prepare the database

You will need a mysql server, with version 4.0.18 or greater installed. You can either install one from
scratch (follow the instruction on mysql's site) or you can use an installation you have ready.

The gums setvice comes with a ./sbin/setupDatabase script which will create the database, and modify
the policy file with the relevant information. The script will make you log in as root in mysql, will create a
user and a database. You can see the script in ./var/sql/setupDatabase.mysql.

[root @ww guns-service]# cat var/sql/setupDat abase. nysql
CREATE DATABASE GUMS_1_0;
GRANT ALL

ON GUMB_1_0. *
TO @ISER@® @ERVER@ | DENTI FI ED BY ' @ASSWORD@ ;

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.4.2 INSTALLATION GUIDE 26

USE GUMB_1_0;

CREATE TABLE User (
user | D | NTEGER AUTO_| NCREMENT PRI MARY KEY,
user DN VARCHAR(255) NOT NULL,
user FQAN VARCHAR(255) DEFAULT NULL,
regi strationDate DATETI ME NOT NULL,
renoval Dat e DATETI ME DEFAULT NULL,
user G oup VARCHAR(255) NOT NULL

)

CREATE TABLE User Account Mappi ng (
meppi ngl D | NTEGER AUTO_| NCREMENT PRI MARY KEY,
user DN VARCHAR(255) DEFAULT NULL,
account VARCHAR(31) NOT NULL,
start Dat e DATETI ME DEFAULT NULL,
endDat e DATETI ME DEFAULT NULL,
user Group VARCHAR(255) NOT NULL

The database structure is very simple: it's just a place to store lists of users (in the User table) and a list of
mappings (UserAccountMapping). It's meant to be simple: it's direct consequence of the requirement that
GUMS should be easily ported to other persistence mechanisms (i.e. LDAP, other site internal DB, ...).
The first table will be mainly used to cache the values from the VO servers. For example, in the policy
you will specify you want to map all the users from the ATLAS VO to the 'usatlas1' account: from time
to time GUMS will query the VO server and store the list of users in the User table. For each mapping
request, GUMS will look at its local copy instead of the remote VO server.

The User and UserAccountMapping tables are also critical for manual user groups and manual mappings.
This means an admin is free to create a group of certificates, or a certificate to user mapping, to handle
special cases. GUMS will have commands to add entries to these mapping, so you do not need to use the
DB directly. You can if you want, though, for integration purposes. In any case, the use of these manual
groups and mappings has a big effect: this is critical information that cannot be lost. Which means you
will need to backup the server. This is a good candidate for integration: you might want to keep this
information in the same information system you use for user account, as the information is connected.

To sum up: if you do not use manual groups and mappings, the information in the database can be
regenerated at any time. If you do, GUMS has critical information, and you might want to make it safer
through some kind of backup.

Once you created the database, you probably want to insert your DN in the User table within a group
you will later use in GUMS as the admin group. You can use the ./sbin/addAdmin script, which will use
the ./var/sql/addAdmin.mysql template:

[root @ww sbin]# cat ../var/sql/addAdm n. nysql
USE GUMS_1_0;

I NSERT | NTO User SET user DN=" @ADM NDN@, user Group="adm ns";

This insetts a DN in a manual uset group named "admins".

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.4.2 INSTALLATION GUIDE 27

Once the database is prepared: you can now proceed to install the Service

Installing the service

GUMS is written in java, and requires java to be installed to run. It was developed against Sun JDK 1.4.2,
but it should run on any 1.4.x and 1.5.x compliant JVM. If you need to install java, or learn more about it,
refer to the documentation at http://java.sun.com .

The GUMS service is a standard J2EE application, which means it is a file (-war) that can be installed in
any compliant engine. We provide a tarball containing a Tomcat 5.0.28 + EGEE security preconfigured,
which is the configuration GUMS was developed against. The EGEE provides an SSL Socket Factory
that Tomcat uses to create the SSL connections. The EGEE SSL is essentially standard SSL with the
addition of Grid proxies. You can find more information about it if you look for "glite trustmanager".
The bundled tomcat is modified in the following way:

* 4 more jars where put in the $CATATLINA_HOME/setver/lib directory:
beprov-jdk14-125 jar
glite-security-trustmanager.jar
glite-security-util-java.jar
log4j-1.2.8.jar
These contain the EGEE SSL socket factory and dependency

* In $CATALINA_HOME/conf the following file is added:
log4j-trustmanager.properties
Which is the logging configuration for the EGEE security

* The $CATALINA_HOME/conf/setver.xml was modified. The following section is added:
<Connector port="8443" maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
enableLookups="false" disableUploadTimeout="true" acceptCount="100" debug="0"
scheme="https" secure="true"
sSLImplementation="org.glite.security.trustmanager.tomcat. TMSSLImplementation"
ssICAFiles="/etc/grid-security/ certificates/*.0" crlFiles="/etc/grid-security/certificates /*.t0"
sslCertFile="/etc/grid-security/hostcert.pem" ssliKey="/etc/tomcat/hostkey.pem"
log4jConfFile="/opt/tomcat-5.0.28-egeesec/ conf/log4ij-trustmanager.properties" clientAuth="true"

sslProtocol="TLS" />

This makes Tomcat listen on port 8443 for https, using the EGEE security. You will notice all the
parameters for a Grid connection, and the configuration file that was added for EGEE security
logging. The part declaring the port 8080 on http was closed.

Essentially, this is what is needed to setup EGEE security.

The setvice is available on the web site as a tar, though you should use it unpacked. It contains the web
application in ./var/war, and the configuration files are for kept in the ./var/war/WEB-INF/classes
directory, and loaded through classloading. Tomcat will need to refer to this war directory: the easiest way
is to make a link to it from the Tomcat webapps directory. The service tar also contain a couple of scripts
to setup the database, which you have seen before.

The configuration files are 2:

* log4j.properties. This is a standard log4j configuration, which will determine how the logging is
implemented. This is loaded once when the server is started. To change it, the service will need to be

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

http://java.sun.com

1.4.2 INSTALLATION GUIDE 28

restarted.

* gums.contig. This is the policy file for GUMS, which determines how all users will be mapped to
their local account. Also the access to the database is defined here. This can be changed at any point,
and the service will pick it up. At any operation that needs the configuration, a check is performed to
see if the file has been changed. If it is, this will trigger a configuration reload.

You can refer to the full documentation of the configuration files for the details.

Once you have setup the server and the web application, you can use your browser with your grid
credential to connect to the WebUI and run a couple of commands.

Installing the client tools

The client tools come packaged in an rpm. The default location is / opt/ gums, but the destination can be
changed. Once you install it, you will see 4 directories:

* bin: contains the gums executables. They are shell script that prepares the java environment for
GUMS. One critical part is the creation of the variable to handle the grid security. It is a single
executable that accept different commands, like cvs does (i.e. "./gums mapUser ...", "./gums
generateGridMapfile ...". The script has --help options that explains what are the cutrent features.

* etc: contains the configuration file for admin, which is one. The only thing it contains the URL to the
servlet that runs the web service. You have to point to your server before being able to run any
commands

* lib: contains all the java libraries needed by GUMS

* var/log: contains the log files for the admin. There won't be much there, as all the functionalities are
implemented on the service.

There are two main tools: gums and gums-host. The first one runs with the user credentials (proxy) and
allows an admin to perform all the operations. The second runs with the host credentials
(/etc/gtrid-security/host*.pem), and allows the host to retrieve the maps (grid-mapfiles and the OSG
accounting map).

You can use ./bin/gums to:

* View the generations of the map
* Change the manual group and mapping

* Trigger a refresh of the groups (i.e. make GUMS contact the VO servers to refresh the local member
lists)

You can use ./bin/gums-host to:

* Generate maps for the host: these will be based on the hostname

* Test the connectivity of the callout door.

Sample configuration

In the quick installation, you can find a sample configuration for OSG.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.5 CONFIGURATION 29

15 Configuration

Configuring GUMS

All the configuration of GUMS is in the following files:

o ./var/war/WEB-INF/ classes/gums.config - holds all the configuration information for GUMS,
including the database parameters, the policy, which VOs GUMS is going to contact and which
gatekeeper will use which map.

* ./var/war/WEB-INF/ classes/log4j.properties - this is the configuration for log4j, which is a well
known library for logging in java. We will not discuss the details here: GUMS comes with this file
preconfigured, and you can refer to the logging section for more details. If you want more
information about how to modity this file, refer to the log4j documentation at
http:/ /logging.apache.org/log4j/docs/documentation.html .

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

http://logging.apache.org/log4j/docs/documentation.html

1.5.1 GUMS.CONFIG 30

151 gums.config

gums.config

This file contains the policy in an XML format. The syntax is meant to allow anybody to create his/her
own components and integrate them just by dropping a jar in the lib directory. Therefore many
components are defined by class names and bean properties. (If you are not a java programmer, a bean
property is a getXxx/setXxx pattern, where xxx is the name of the property).

The XML file has this structure:

<gumns>
<per si st enceFactori es>
<per si st enceFactory/ >
</ per si st enceFactori es>
<adm nUser G oup/ >
<gr oupMappi ngs>
<gr oupMappi ng>
<user Group/ >
<account Mappi ng/ >
</ gr oupMappi ng>
<gr oupMappi ng>
<user G oup/ >
<conposi t eAccount Mappi ng>
<account Mappi ng/ >
<account Mappi ng/ >
<account Mappi ng/ >
</ conposi t eAccount Mappi ng>
</ gr oupMappi ng>

</ gr oupMappi ngs>

<host Gr oups>
<host Group/ >
</ host Gr oups>
</ guns>

There are 3 sections:

* persistenceFactories - defines where the local data can be stored. For example, GUMS will keep a
local copy of the VO listings: you can decide where to keep them. Each component that will need
persistence will retrieve it through the factory. This allows to create a custom persistence layer for the
facility.

* groupMappings - defines group of user and how they are mapped. A groupMapping is defined by two
thins: a set of users (userGroup) and a policy for account mapping (accountMapping). Optionally, the
policy can be composed by different policies (compositeAccountMapping)

* hostGroups - defines which groupMappings are used for the different hosts

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.5.1 GUMS.CONFIG 31

persistenceFactories
This section just contains a list of persistencelFactory elements.
<persi st enceFactori es>
<persi st enceFactory name=' nysql'

cl assNanme=' gov. bnl . guns. MySQLPer si st enceFactory' />
</ per si st enceFactori es>

persistenceFactory

The type of persitenceFactory is determined by the class which has to implement the PersistenceFactory
interface. The basic attributes are:

Attribute Description Examples

name The name that will be used by the other mysq|
components to refer to this files
persistenceFactory. Idap

className The class that is going to provide the gov.bnl.gums.MySQLPersistence
implementation for the persistence layer. It Factory
must implement gov.bnl.gums.Persistence org.mysite.HRDatabaseFactory
Factory.

Other attributes are implementation specific.

All the elements that will be using the database, will need to set the 'persistence

Factory' attribute to the name, and then provide a 'name' attribute that will identify which information to
use. What that name means is implementation specific. For a database layer, for example, it could mean a
table or a column value within a well known table; for a file layer it could mean the name of the file.

gov.bnl.gums.MySQLPersistence Factory

Currently, the only implementation provided is the MySQLPersistenceFactory. All the attributes are
passed as properties to the database driver. For example:

<persi stenceFactory nane='nysql' cl assNanme='gov. bnl . guns. MySQLPer si st enceFactory'
jdbcDriver="com nysql.jdbc. Driver'
jdbcUrl =" jdbc: nmysql :// nydb. nysite. coml GUMS_0_7' user='guns'
passwor d=' nypass' autoReconnect='true' />

adminUserGroup

This defines the set of users that have admin privileges on GUMS. This entry has the same options as a
userGroup entry. Refer to that part of the documentation.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.5.1 GUMS.CONFIG 32

groupMappings

This section will contain a list of groupMappings elements.

groupMapping

A group mapping is composed by two elements: a userGroup and a mapping, which can either be a
compositeAccountMapping or an accountMapping.

Attribute Description Examples
name The name that will be used by the other atlas
components to refer to this star
persistenceFactory. phenix
userGroup

This element defines the list of people that will be part of this groupMapping. A userGroup is typically
defined by a group on a VO server or on a database. This element corresponds to the UserGroup
interface in the code, meaning you can provide your own logic. The basic attributes are:

Attribute Description Examples

className The class that is going to provide the gov.bnl.gums.LDAPGroup
implementation for the user group. It must gov.bnl.gums.VOMSGroup
implement gov.bnl.gums.UserGroup. gov.bnl.gums.ManualGroup

gov.bnl.gums.LDAPGroup

This class retrieves the list of members from an LDAP VO, as it is defined within LCG. The attributes
available are:

Attribute Description Examples
server The LDAP server from which to retrieve the grid-vo.nikhef.nl
information
query The query to be used on the server. ou=usatlas,o=atlas,dc=eu-datagrid,dc=org

ou=People,o=atlas,dc=eu-datagrid,dc=org

persistence The persistence layer to be used to store mysq|
Factory locally the list of users. The string must be
one of the names defined within the
persistenceFactories section.

GUMS doesn't contact the server
at every request, but it keeps a
local cache, which is refreshed
from time to time

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.5.1 GUMS.CONFIG

33

Attribute Description Examples
name The name of the cache within the persistence atlas
factory. Refer to the specifics of the usatlas

persistence factory itself.

For example:

<user Group cl assNane=' gov. bnl . guns. LDAPG oup'

server='grid-vo. ni khef.nl"

guer y=' ou=Peopl e, o=at | as, dc=eu-dat agri d, dc=org' persistanceFactory="'nysql"'

nane='atl as' />

Retrieves all the user in the ATLAS VO LDAP server.

gov.bnl.gums.VOMSGroup

'This class retrieves the list of members from an VOMS Server. The attributes available are:

Attribute Description Examples
url The url of the web services for VOMS. Notice https://vo.racf.bnl.gov:8443/edg-voms-admin/atlas/services/VOMSAdm
that it needs the full url of the service: it won't
be constructed from the server name or vo.
voGroup The group defined within the VO. /atlas/test
latlas/group/subgroup
persistence The persistence layer to be used to store mysq|
Factory locally the list of users. The string must be
one of the names defined within the
persistenceFactories section.
GUMS doesn't contact the server
at every request, but it keeps a
local cache, which is refreshed
from time to time
name The name of the cache within the persistence atlasTest
factory. Refer to the specifics of the atlasGroupSubgroup

persistence factory itself.

For example:

<user Group cl assNane=' gov. bnl . guns. VOVSG oup'
url ="https://vo.racf.bnl.gov: 8443/ edg- vons- adm n/ at | as/ servi ces/ VOVBAdm n'

persi st anceFact ory='nmysql"'
nanme='at | as'

voG oup="/atl as/test"

sslCertfile="/etc/grid-security/hostcert.pemn
ssl Key='/etc/grid-security/hostkey. pem />

Retrieves all the user in the VOMS server at the specified utl from the /atlas/test group. It also specifies
which credentials should be used to contact the server.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.5.1 GUMS.CONFIG 34

gov.bnl.gums.ManualGroup

This class manages a group of identities stored in the persistence. Useful to handle special cases, for
development testbed or for the list of admins. GUMS The attributes available are:

Attribute Description Examples
persistence The persistence layer to be used to store the mysq|l
Factory list of users. The string must be one of the

names defined within the
persistenceFactories section.

name The name of the group within the persistence test
factory. Refer to the specifics of the testbedA
persistence factory itself. admins

For example:

<user Group cl assNanme=' gov. bnl . guns. Manual User Gr oup' persi stanceFactory='nysql"'
nanme='test Goup' />

Selects the users stored manually in the testGroup group.

compositeAccountMapping

A compositeAccountMapping is a mapping policy made up by a list of policies. When a request to map a
user comes, the composite mapper will forward the request to the first mapper in the list. If this fails, the
request is forwarded to the second, and so on. This allows you to create a policy that has a default (the
last element on the list) but allows special cases (the top element in the list).

This element simply contains a list of accountMapping elements.

accountMapping

An account mapping defines the logic with which the user credentials are mapped to the local account.
The logic will be provided by a class implementing the goc.bnl.gums.AccountMapping interface.

Attribute Description Examples

className The class that is going to provide the gov.bnl.gums.ManualAccountMapper
implementation for the mapping. It must gov.bnl.gums.NISAccountMapper
implement gov.bnl.gums.AccountMapping. gov.bnl.gums.AccountPoolMapper

gov.bnl.gums.GroupAccountMapper

gov.bnl.gums.NISAccountMapper

This class retrieves the NIS maps and tries to match the name from a certificate. Please, read the full
documentation on the javadoc about this class before using it. The attributes available are:

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.5.1 GUMS.CONFIG

Attribute Description Examples

35

jndiNisUrl The url as defined in the Java JNDI driver, nis://nis.bnl.gov/atlas

that allows to specify the NIS server and the
domain.

For example:

<account Mappi ng cl assNane=' gov. bnl . guns. Nl SAccount Mapper 2'
jndiNisUl="nis://nis.nysite.org/domain' />

Uses the NIS map taken from the nis.mysite.org server for domain.

gov.bnl.gums.AccountPoolMapper

This class implements account pooling. Please refer to the account pool documentation for the full

detailed description. The attributes available are:

Attribute Description Examples

TODO

For example:

TODO
todo

gov.bnl.gums.GroupAccountMapper

This class maps all users to the same account. The attributes available are:

Attribute Description Examples
groupName The name of the account atlas
testAccount

For example:

<account Mappi ng cl assNane=' gov. bnl . guns. G oupAccount Mapper"'

Maps everyone to the atlas account.

hostGroups

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

gr oupName="at | as'

/>

1.5.1 GUMS.CONFIG

36

This section contains a list of host groups. To determine to which group a particular host is part, GUMS
start from the first one in the list and stops at the first match.

hostGroup

A hostGroup defines a group of hosts and which groupMappings will be used. This element corresponds
to the HostGroup interface. This allows to retrieve hosts lists from other components of the facility, for
example an information service.

Attribute Description Examples

className The class that is going to provide the gov.bnl.gums.WildcardHostGroup
implementation for the hostGroup. It must
implement gov.bnl.gums.HostGroup.

groups A list of groupMappings, in the order of groupl,group2
preference. To determine which group should
be used for a particular user, GUMS will start
from the beginning of the list until it finds a
match. Therefore, if there would be more than
one match (i.e. a user is part of more groups)
the first one in the list is used.

gov.bnl.gums.WildcardHostGroup

This class represent a set of hosts defined by a hostname wildcard. For example, *.mysite.org would
include all the hosts which end in mysite.org. The attributes that can be set for this class are:

Attribute Description Examples

wildcard The wildcard for the set of hosts to be myhost.mysite.org
included. The wildcard is a string where * can atlas*.mysite.org
be substituted with any character, except ".". * atlas.mysite.org

That is, *.bnl.gov wouldn't match
myhost.usatlas.bnl.gov.

For example:

<host Group cl assNanme="gov. bnl . guns. W1 dcar dHost Gr oup"

wi | dcard="*.usatl as. bnl . gov' groups='gridex, sdss, uscns, usatl asG oup, btev, i go,ivdgl'
/>

Maps the hosts in the usatlas subdomain at BNL to the list of groups, which will have been defined in the
groupMappings section.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

152

1.5.2 EXAMPLES 37

Examples

How to Configure GUMS

This article goes through different scenarios of GUMS configuration. See the gunms.config file documentation before reading
this.

Mapping people from a VOMS server

Use VOMSGroup. For example, here we get all people from the ATLAS server in the USATLAS
(/atlas/usatlas) group, and we map them to a default account 'usatlas'.

<gr oupMappi ng nane='usatl as' accountingVo='usatlas' accounti ngDesc=' ATLAS >
<user Group cl assNane=' gov. bnl . guns. VOVEG oup’
url ="https://voms. cern. ch: 8443/ edg- vons- adni n/ at| as/ servi ces/ VOVBAdm n'
persi stenceFactory="nysql' nane='usatl as’
voG oup="/atl as/usatl as" sslCertfile="/etc/grid-security/hostcert.pemn
ssl Key='/etc/grid-security/hostkey. pem ignoreFQAN="true"/>

<account Mappi ng cl assNane=' gov. bnl . guns. G oupAccount Mapper' groupNane=' usat| asl'
/>

</ gr oupMappi ng>

The userGroup.persistenceFactory and userGroup.name tell us to use mysql to store the information.
The VOMS server is contacted only when updateGroup is done. We can make all hosts at our site use
this mapping by adding in hostGroup.groups the value declared in groupMapping.name, as shown below:

<hostGroup className='gov.bnl.gums.WildcardHostGroup' wildcard="*.mysite.com'
groups="..,usatlas,...' />

Allowing ad-hoc list of people

You might need to allow some people without adding a VO, e.g., for testing. You do that by using a
ManualGroup. For example:

<gr oupMappi ng nane='testers' >

<user Group cl assNane=' gov. bnl . guns. Manual User G oup'

persi stenceFactory='nysql' nane='testers' />

<account Mappi ng cl assNane=' gov. bnl . guns. G- oupAccount Mapper' groupNanme='test' />
</ gr oupMappi ng>

The userGroup.persistenceFactory and userGroup.namer? tells us the list will be stored in mysql. In this
example, we add the group name to the beginning of the hostGroup.groups list, so it will override all the
other group, as shown below:.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.5.2 EXAMPLES 38

<host Group cl assNane=' gov. bnl . guns. W1 dcar dHost G oup' wi | dcard="*.nysite. con
groups='testers,..."' />

You can then add and/or remove people using the commands './bin/gums manualGroup-add' and/or
'./bin/gums manualGroup-remove'.

Using account pools

GUMS does not create accounts. First you'll have to create accounts and make them known to the
gatekeeper and worker nodes. Here's an example of configuring a pool of accounts for the ATLAS VO:

<gr oupMappi ng nane='usatl as' accountingVo='usatlas' accounti ngDesc=' ATLAS >
<user Group cl assNane=' gov. bnl . guns. VOVEG oup’
url ="https://vomns. cern. ch: 8443/ edg- vons- admi n/ at | as/ servi ces/ VOVSAdm n'
persi stenceFact ory="nysql' nane='usatl as’
voG oup="/atl as/usatl as" sslCertfile="/etc/grid-security/hostcert.pen
ssl Key='/etc/grid-security/hostkey. pem ignoreFQAN="true"/>
<account Mappi ng cl assNane=' gov. bnl . guns. Account Pool Mapper"'

persi st enceFactory='nysql' nane=' bnl Pool' />

</ gr oupMappi ng>

This will tell GUMS to look for the list of available accounts in the bnlPool stored in mysql. You can set
different pools for different groups, or the same pool for some or all groups. Here we configure the pool
to be used by a group of hosts:

<host Group cl assNane=' gov. bnl . guns. W dcar dHost G- oup' wi | dcard="*.nysite. coni
groups='...,usatlas,..."' />

Let's leave the GUMS configuration file for a moment and put some accounts in the pool (the accounts
must be known to the gatekeeper and the worker nodes):

> ./ bin/guns pool -addRange nysql bnl Pool grid0000-199

GUMS will now assign accounts to DN as requests come in from the gatekeeper. (If you generate a
user-to-VO map for accounting, though, all DNs will be assigned an account immediately.)

Composite mapping

It can be useful to assign an account to a DN by hand. For example, we may generally want to assign
accounts to usatlas from a pool, but there are a few special cases in which we need more control. We
would use <compositeAccountMapping> for these cases, as shown here:

<gr oupMappi ng nane='usatl as' accountingVo='usatlas' accountingDesc=' ATLAS >
<user G- oup cl assNanme=' gov. bnl . guns. VOVEG oup’
url =" https://vons. cern. ch: 8443/ edg- vons- admi n/ at | as/ servi ces/ VOVSAdm n'
persi stenceFact ory='nysql' nane='usatl as’
voG oup="/atl as/usatlas" sslCertfile="/etc/grid-security/hostcert.pen

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.5.2 EXAMPLES 39

ssl Key='/etc/grid-security/hostkey. pem ignoreFQAN="true"/>
<conposi t eAccount Mappi ng>
<account Mappi ng cl assNane=' gov. bnl . guns. Manual Account Mapper"'
persi stenceFactory='"nysql' nane='bnl Map' />
<account Mappi ng cl assNane=' gov. bnl . guns. Account Pool Mapper'
persi st enceFact ory='nysql' nane=' bnl Pool"' />
</ conposi t eAccount Mappi ng>
</ gr oupMappi ng>

The compositeAccount allows you specify a list of mappers (e.g., Manual AccountMapper,
AccountPoolMapper). If the first doesn't return an account, the second is tried, and so on. In this
example, we first use the ManualAccountMapper that takes the bnlMap map from mysql. If the DN in
question isn't mapped there, we fall back on the pool.

You can add/remove entries in the map using the commands './bin/gums manualMapping-add' and
'./bin/gums manualMapping-remove'.

Mapping based on groups/roles

You'll need to create different group mappings for the different roles. This first example maps people
with the VOMS attribute voGroup of "/atlas/usatlas" to the account usatlas1. Notice that
userGroup.ignoreFQAN is missing; this means that if the VOMS attribute doesn't match, the next group
is checked.

<gr oupMappi ng nane='usatl as' accountingVo='usatlas' accounti ngDesc=' ATLAS >

<user Group cl assNane=' gov. bnl . guns. VOVEG oup'

url ="https://voms. cern. ch: 8443/ edg- vons- adni n/ at| as/ servi ces/ VOVBAdm n'

persi stenceFact ory="nysql' nane='usatl as’

voG oup="/atl as/usatl as" sslCertfile="/etc/grid-security/hostcert.pemn

ssl Key='/etc/grid-security/hostkey. pem />

<account Mappi ng cl assNane=' gov. bnl . guns. G oupAccount Mapper' groupNane=' usat| asl'
/>
</ gr oupMappi ng>

The second maps people with the VOMS attributes voGroup of "/atlas" and voRole "production" to the
account usatprod.

<gr oupMappi ng nane='usat| asProd' accounti ngVo='usatl as' accountingDesc=" ATLAS' >
<user Group cl assNane=' gov. bnl . guns. VOVEG oup'
url ="https://voms. cern. ch: 8443/ edg- vons- adni n/ at| as/ servi ces/ VOVBAdm n'
persi stenceFact ory='nysql' nane='usat! asProd’
voG oup="/atl as" voRol e="production"
ssl Certfile="/etc/grid-security/hostcert. pen
ssl Key='/etc/grid-security/hostkey. pem />
<account Mappi ng cl assNane=' gov. bnl . guns. G oupAccount Mapper' groupNane=' usat prod'
/>
</ gr oupMappi ng>

And then we define the hostGroup and include both groups:

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.5.2 EXAMPLES

<host Group cl assNane=' gov. bnl . guns. W1 dcar dHost G oup' wi | dcard="*.nysite. con
groups='usatl asProd, usatlas,..."' />

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

40

1.6

1.6 GUMS CLIENT COMMANDS 41

GUMS Client Commands

GUMS Client command line tools

Here we describe all the commands available use and their intended use.

List of tools
All GUMS commands ate located in the ./bin directory of your GUMS installation. There are three tools:

* ./bin/gums - this script will provide access to all GUMS functionalities, including adding and
removing people to manually managed groups, generating maps for any hosts and forcing GUMS to
refresh the user lists from the VO servers. This script will run using user credentials, and will need a
valid proxy certificate. The DN for the user must be in the admin group, or GUMS will respond with
an authorization denied.

* ./bin/gums-host - this script will provide access to only the maps for the current host. One can either
retrieve the maps (mapfile and osg inverse map) or test the callout door requesting the mapping for a
particular user credential (DN and FQAM). The script will use the host credentials, so it will be
typically executed as root. The host credentials will need to match the name of the map requested,
and no special authorization needs to be set in GUMS.

* ./bin/gums-host-cron - this is a pre-made cron job that retrieves the maps and installs them at the
proper position. Will generate the mapfile and install it in /etc/grid-security/grid-mapfile, and if
$VDT_LOCATION, the inverse map for accounting will be saved in
$VDT_LOCATION/monitoring/grid3-uset-vo-map.txt.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.6.1 ./BIN/GUMS 42

161 ./bin/gums

Jbin/gums

We describe the ./ bin/ gums which provides all the administrative functions for GUMS. We'll describe the use of the
commands, giving examples, but for the full options please refer to the --help output of the commands themselves.

./bin/gums consists of a set of command line tools which will be run under the user GRID credentials.
The user must be part of the GUMS admins.

Authentication and authorization

./bin/gums runs using the user credentials, not the host credentials. This means that the user will need to
run grid-proxy-init, or voms-proxy-init, to generate a valid proxy certificate. The certificate will also need
to be in the admin group, or you will get an authorization denied. To add a person in the admin group,
refer to the GUMS Service documentation.

Jbinfgums commands

The script provides many commands, which you can list just by running the script with no arguments:

[carcassi @test gk01 ~]$ /opt/guns/ bi n/ guns
usage: guns command [conmand- opti ons]
Commands:
generat eGi d3User VoMap - Generate grid3-user-vo-map.txt for a given host.
generateGidMapfile - Generate grid-mapfile for a given host.
manual Group-add - Includes a DN in a group.
manual G oup-renove - Renoves a DN from a group.
manual Mappi ng-add - Adds a DN-to-usernane in a napping.
manual Mappi ng-renpve - Renpves a DN from a nmappi ng.
mapUser - Local credential used for a particul ar user.
mapfil eCache-refresh - Regerates mapfiles in the cache.
pool -addRange - Adds accounts to an account pool.
updat eGroups - Contact VO servers and retrieve user |ists.
For hel p on any conmand:
gunms command - - hel p

You can then retrieve the full syntax of each command by calling it with the --help options. For example:

[carcassi @testgkOl ~]$ /opt/guns/bin/gunms mapUser --help
usage: guns mapUser [-s SERVICE] [-n TIMES] [-t NREQUESTS] [-b] [-f FQAN]
[-i FQANI SSUER] USERDNL [USERDNZ]
Maps the grid identity to the |ocal user.
Opt i ons:
-f,--fgan <arg> Fully Qualified Attribute Nane, as it would be
sel ected using vons-proxy-init; no extended information by

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.6.1 ./BIN/GUMS 43

def aul t
-t,--timng <arg> enabl es timng, grouping the requests. For exanple,
"-t 100" will give you timng information on 100 requests at a
time
-b, --bypassCal | out connects directly to GUVS instead of using the
cal | out
-i,--issuer <arg> Fully Qualified Attribute Name |ssuer, that is the
DN of the VOMVS service that issued the attribute certificate
-n,--ntinmes <arg> nunber of tines the request will be repeated
--help print this nessage

-s,--service <arg> DN of the service

Please, refer to the help on the command line for the full syntax of the commands.

Service mapping generation commands

This set of commands can be used by the admin to check how the mapping across the services is
maintained. One can look how the maps generated by GUMS look like, and check to which local user
any Grid identity is mapped. These are the same as the ./bin/gums-host commands, but, since they run
with admin credential, they can access mapping to all hosts.

gums mapUser

With this command an admin can check the mapping of a specific identity, including the VOMS
extended proxy FQAN. This allows to check if the user is mapped to the correct account when using
different VO roles. It issues a mapping request as the callout to the gatekeeper does, which is very helpful
to diagnose problems.

Here are a couple of examples:

[carcassi @t estgk01l ~]$ /opt/guns/bin/guns mapUser \
-s "/ DC=or g/ DC=doegri ds/ OU=Ser vi ce/ CN=nygk. nysi te. com' \
"/ DC=or g/ DC=doegr i ds/ OU=Peopl e/ CN=CGabri el e Carcassi 12345"
Local | d[user Name: gri d12345]

This examples asks the GUMS server what account would the certificate be mapped on the
mygk.mysite.com gatekeeper.

One can also ask what account would be used if the user would come in with a particular role.

[carcassi @t est gk01 ~]$ /opt/guns/bin/guns mapUser \
-s "/ DC=or g/ DC=doegri ds/ OU=Ser vi ce/ CN=nygk. nysi te. com' \
-f "/myvo/ Rol e=rol el" \
-i "/ DC=or g/ DC=doegri ds/ OU=Ser vi ce/ CN=vons. nysi te. com' \
"/ DC=or g/ DC=doegr i ds/ OU=Peopl e/ CN=Gabri el e Carcassi 12345"
Local | d[user Nanme: speci al 1]

Here we see the same user being assigned a different account.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.6.1 ./BIN/GUMS 44

gums generateGridMapfile

This commands allows to retrieve a grid-mapfile for a specific host. Be careful: generating a map will
force all the policy to be explored, and it might have undesired side effects. For example, when using the
account mapping, this will force assigning an account to each user, even if they are never going to come
on site.

Here are a couple of examples:

Without arguments, it will generate the map for the hostname assigned to the machine where the
command is run. Notice that, in special configuration, the name of the machine and the name specified in
the host certificate might different.

[carcassi @t estgk01l ~]$ /opt/guns/bin/guns generateGidMapfile

#---- nenbers of vo: usatlas ----#

"/ C=CH O=CERN OU=CRI U CN=Fr ederi k Orellana 5894" usatlasl

"/ C=CH O=CERN OU=GRI D CN=M chel a Biglietti 4798" usatlasl

"/ C=CH O=CERN OU=CGRI D CN=M guel De diveira Branco 2423" usatlasl

"/ C=CH O=CERN OU=GRI DY CN=Shul anmt Mded 9840" usatl asl

"/ DC=or g/ DC=doegr i ds/ OU=Peopl e/ CN=Al den Stradling 409738" usatlasl

"/ DC=or g/ DC=doegri ds/ OU=Peopl e/ CN=Al do Saavedra 942457" usatl asl

"/ DC=or g/ DC=doegr i ds/ OU=Peopl e/ CN=Al exandre V Vani achi ne 778117" usatlasl

As an admin, you can generate the map for any host by giving the name as an argument

[carcassi @testgk01l ~]$ /opt/guns/bin/guns generateGidMapfile gatekeeper.nysite.com
#---- nenbers of vo: usatlas ----#

"/ C=CH O=CERN OU=CRI DY CN=Fr ederi k Orellana 5894" usatl|asl

"/ C=CH O=CERN OU=GRI Y CN=M chel a Biglietti 4798" usatlasl

"/ C=CH O=CERN OU=GRI D CN=M guel De diveira Branco 2423" usatlasl

"/ C=CH O=CERN OU=GRI DY CN=Shul am t Mobed 9840" usatl asl

"/ DC=or g/ DC=doegr i ds/ OU=Peopl e/ CN=Al den Stradling 409738" usatl asl

"/ DC=or g/ DC=doegr i ds/ OU=Peopl e/ CN=Al do Saavedra 942457" usatl asl

"/ DC=or g/ DC=doegr i ds/ OU=Peopl e/ CN=Al exandre V Vani achi ne 778117" usatl asl

gums generateGrid3UserVoMap

This command allows to retrieve the inverse map used by Gtid3/OSG accounting. Be careful: generating
a map will force all the policy to be explored, and it might have undesired side effects. For example, when
using the account mapping, this will force assigning an account to each user, even if they are never going
to come on site.

Here are a couple of examples:

Without arguments, it will generate the map for the hostname assigned to the machine where the
command is run. Notice that, in special configuration, the name of the machine and the name specified in
the host certificate might different.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.6.1 ./BIN/GUMS 45

[carcassi @testgk01l ~]$ /opt/guns/bin/guns generateG i d3UserVoMap test.nysite.com

#User - VO map

#coment line, format of each regular line line: account VO
Next 2 lines with VO nanes, sane order, all |owercase, with case (lines starting
Wi

th #voi, #VQc)

#voi usatlas ivdgl ligo btev uscns sdss gridex grase

#VOc ATLAS i VDgL LI GO BTeV CMS SDSS GRI DEX GRASE

#---- accounts for vo: usatlas ----#

usat | asl usatl as

#---- accounts for vo: ivdgl ----#

i vdgl ivdgl

As an admin, you can generate the map for any host by giving the name as an argument

[carcassi @t estgk0l ~]$ /opt/guns/bin/guns generateG i d3User VoVap
gat ekeeper. nysite.com

#User - VO map

#comment line, format of each regular line line: account VO
Next 2 lines with VO nanes, sane order, all |owercase, with case (lines starting
Wi

th #voi, #VQr)

#voi usatlas ivdgl ligo btev uscns sdss gridex grase

#VOc ATLAS i VDgL LI GO BTeV CMS SDSS GRI DEX GRASE

#---- accounts for vo: usatlas ----#

usat| asl usatlas

#---- accounts for vo: ivdgl ----#

i vdgl ivdgl

Manual groups and mappings managements commands

This set of commands allows the admin to add and remove entries from a manual group or mapping.
These are resident in your database, and are managed "by hand" by the admin to handle special cases ot
customizations. To have any effect, these groups/mappings must be set in the configuration file. For
example, the following uses a manually define set of users to be mapped to the account "myacc”.

<gr oupMappi ng nane=' exanpl el' accountingVo='nyvo' accounti ngDesc='nyVo' >
<user Group cl assNanme=' gov. bnl . guns. Manual User G- oup' persi stenceFactory="nmysql"'
name=' groupl' />
<account Mappi ng cl assNane=' gov. bnl . guns. G- oupAccount Mapper' groupName='nmyacc'
/>
</ gr oupMappi ng>

The manual user group is identified by the persistence (mysql) and the name of the group (group1).
These are the parameter that will also be used for the command line.

For a manual mapping, the following defines a manual mapping for the users taken from a VOMS server.

<gr oupMappi ng nane=' exanpl e2' accountingVo='nyvo' accounti ngDesc='nyVo' >
<user Group cl assNane=' gov. bnl . guns. VOVEG oup’

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.6.1 ./BIN/GUMS

url ="https://vons. nysite. com 8443/ edg- vons- adm n- nyvo/ servi ces/ VOVSAdn n'
persi st enceFact ory="'nysql"'
nanme=' nyvo' voG oup="/myvo"
ssl Certfile="/etc/grid-security/hostcert.pem
ssl Key='/etc/grid-security/hostkey. pem ignoreFQAN="true"/>
<account Mappi ng cl assNane=' gov. bnl . guns. Manual Account Mapper"'
persi stenceFact ory='nysql' nane=' mapl'/>
</ gr oupMappi ng>

Also there, the manual map is defined by the persistence (mysql) and a name (map1).

gums manualGroup-add

To add a member in a manual group:

[carcassi @t estgk01 ~]$ /opt/guns/bin/ guns manual G oup-add nysql groupl
"/ DC=or g/ DC=doegri ds/ OU=Peopl e/ CN=Gabri el e Carcassi 12345"

gums manualGroup-remove

To remove a member from a manual group:

[carcassi @t estgk01l ~]$ /opt/guns/bin/guns nmanual G oup-renpve nysql groupl
"/ DC=or g/ DC=doegr i ds/ OU=Peopl e/ CN=Gabri el e Carcassi 12345"

gums manualMapping-add

To add an entry in a map:

[carcassi @testgk01l ~]$ /opt/guns/bin/ guns manual Mappi ng-add nysql mapl
"/ DC=or g/ DC=doegr i ds/ OU=Peopl e/ CN=Gabri el e Carcassi 12345" carcassi

gums manualMapping-remove

To remove an entry from a map:

[carcassi @t estgk01 ~]$ /opt/guns/bin/ guns manual Mappi ng-renobve nysql mapl
"/ DC=or g/ DC=doegr i ds/ OU=Peopl e/ CN=CGabri el e Carcassi 12345"

Other commands

gums updateGroups

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

46

1.6.1 ./BIN/GUMS 47

This command will force GUMS to recontact all the VO servers and retrieve a new list of people.

[carcassi @testgk01l ~]$ /opt/guns/bin/ guns updat eG oups

gums pool-addRange

This is a utility to add a range of accounts to a pool. This won't actually create accounts, which must be
already created; it just makes GUMS aware that they exist and can be used. It assumes that accounts are
something like grid0002, grid0003, ... That is with a fixed part at the beginning and an increasing number
at the end.

This command will add the accounts grid0020, grid0021, ... until grid0040 to the pool

[carcassi @testgkOl ~]$ /opt/guns/bi n/ guns pool -addRange nysqgl pool 1 gri d0020-40

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.6.2 ./BIN/GUMS-HOST 48

162 ./bin/gums-host

/bin/gums-host

We describe the ./ bin/ gunms-host which provides all the host tools for managing a gatekeeper with GUNS. We'll describe
the use of the commands, giving examples, but for the full options please refer to the --help ontput of the commands
themselves.

./bin/gums-host consists of a set of command line tools which will be run under the host GRID
credentials.

Authentication and authorization

./bin/gums-host runs using the host credentials, not the user credentials. This means that the user
running gums-host will need to be able to read the host credentials. A host will be able to only access the
maps relative to the host. That is, the hostname included in the host certificate will need to match to the
maps within GUMS.

Jbin/gums-host commands

The script provides many commands, which you can list just by running the script with no arguments:

[root @vygk bin]$./guns-host
usage: guns-host command [command- opti ons]
Commands:
generat eG i d3User VoMap - Generate grid3-user-vo-nmap.txt for this host.
generateGidMapfile - Cenerate grid-mapfile for this host.
mapUser - Local credential used for a particul ar user.
For hel p on any command:
guns- host command - - hel p

You can then retrieve the full syntax of each command by calling it with the --help options. For example:

[root @vygk bin]# ./gums-host mapUser --help

usage: guns mapUser [-s SERVICE] [-n TIMES] [-t NREQUESTS] [-b] [-f FQAN]
[-i FQAN SSUER] USERDN1 [USERDNZ]

Maps the grid identity to the l|ocal user.

Opti ons:
-f,--fgan <arg> Fully Qualified Attribute Nane, as it would be
sel ected using vons-proxy-init; no extended information by
def aul t
-t,--timng <arg> enabl es timng, grouping the requests. For exanple,
"-t 100" will give you timng informati on on 100 requests at a
time
-b, --bypassCal | out connects directly to GUVS instead of using the

cal | out

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.6.2 ./BIN/GUMS-HOST 49

-i,--issuer <arg> Fully Qualified Attribute Nane |ssuer, that is the
DN of the VOMVS service that issued the attribute certificate
-n,--ntinmes <arg> nunber of tines the request will be repeated
--help print this nmessage

-s,--service <arg> DN of the service

Please, refer to the help on the command line for the full syntax of the commands.

Service mapping generation commands

The only set of commands available for a host are the ones to retrieve mapping information. One can
retrieve the maps generated by GUMS, and check to which local user any Grid identity is mapped. These
are the same as the ./bin/gums commands, but, since they run with host credential, they can access only
that particular host mapping.\

gums-host mapUser

With this command an admin can check the mapping of a specific identity, including the VOMS
extended proxy FQAN. This allows to check if the user is mapped to the correct account when using
different VO roles. It issues a mapping request as the callout to the gatekeeper does, which is very helpful
to diagnose problems. Remember that the service name has to match the name used in the credentials.

Here are a couple of examples:

[root @vygk bin]# ./gums-host mapUser \
-s "/ DC=or g/ DC=doegri ds/ OU=Ser vi ce/ CN=nygk. nysi te. com' \
"/ DC=or g/ DC=doegr i ds/ OU=Peopl e/ CN=Gabri el e Carcassi 12345"
Local I d[user Nane: gri d12345]

This examples asks the GUMS server what account would the certificate be mapped on the
mygk.mysite.com gatekeeper.

One can also ask what account would be used if the user would come in with a particular role.

[root @vygk bin]# ./gums-host mapUser \
-s "/ DC=or g/ DC=doegri ds/ OU=Ser vi ce/ CN=nygk. nysi te. com' \
-f "/nyvo/ Rol e=rol el" \
-i "/ DC=or g/ DC=doegri ds/ OU=Ser vi ce/ CN=vons. nysi te. cont' \
"/ DC=or g/ DC=doegr i ds/ OU=Peopl e/ CN=Gabri el e Carcassi 12345"
Local | d[user Nane: speci al 1]

Here we see the same user being assigned a different account.
gums generateGridMapfile

This commands allows to retrieve a grid-mapfile for the host. Be careful: generating a map will force all
the policy to be explored, and it might have undesired side effects. For example, when using the account

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.6.2 ./BIN/GUMS-HOST 50

mapping, this will force assigning an account to each user, even if they are never going to come on site.
Here are a couple of examples:

Without arguments, it will generate the map for the hostname assigned to the machine where the
command is run.

[root @vygk bin]# ./gums-host generateGidMapfile

#---- nenbers of vo: usatlas ----#

"/ C=CH O=CERN OU=GRI DY CN=Fr ederi k Orellana 5894" usatlasl

"/ C=CH O=CERN OU=GRI Y CN=M chel a Biglietti 4798" usatlasl

"/ C=CH O=CERN OU=GRI DY CN=M guel De diveira Branco 2423" usatlasl

"/ C=CH O=CERN OU=GRI DY CN=Shul am t Mbed 9840" usatl asl

"/ DC=or g/ DC=doegr i ds/ OU=Peopl e/ CN=Al den Stradling 409738" usatl asl

"/ DC=or g/ DC=doegr i ds/ OU=Peopl e/ CN=Al do Saavedra 942457" usatl asl

"/ DC=or g/ DC=doegr i ds/ OU=Peopl e/ CN=Al exandre V Vani achi ne 778117" usatl asl

By default, the hostname used by ./bin/gums-host is simply the name of the current host. There are
some cases in which this differ from the certificate host: for example, if an alias was setup for a service, or
if a gatekeeper has more than one interface. In these cases, one has to specify the name of the host.

[root @vygk bin]# ./guns-host generateG i dMapfil e gatekeeper.nysite.com
#---- nenbers of vo: usatlas ----#

"] C=CH O=CERN OU=GRI DY CN=Fr ederi k Orellana 5894" usatlasl

"/ C=CH O=CERN OU=CGRI DY CN=M chel a Biglietti 4798" usatlasl

"/ C=CH O=CERN OU=GRI D CN=M guel De diveira Branco 2423" usatlasl

"/ C=CH O=CERN OU=CGRI Y CN=Shul am t Mbed 9840" usatl asl

"/ DC=or g/ DC=doegr i ds/ OU=Peopl e/ CN=Al den Stradling 409738" usatlasl

"/ DC=or g/ DC=doegr i ds/ OU=Peopl e/ CN=Al do Saavedra 942457" usatl asl

"/ DC=or g/ DC=doegr i ds/ OU=Peopl e/ CN=Al exandre V Vani achi ne 778117" usatl asl

gums generateGrid3UserVoMap

This command allows to retrieve the inverse map used by Gtid3/OSG accounting. Be careful: generating
a map will force all the policy to be explored, and it might have undesired side effects. For example, when
using the account mapping, this will force assigning an account to each user, even if they are never going
to come on site.

Here are a couple of examples:
Without arguments, it will generate the map for the hostname assigned to the machine where the

command is run.

[root @vygk bin]# ./gums-host generateGid3UserVoMap test.nysite.com
#User - VO map
#comment line, format of each regular line line: account VO

Next 2 lines with VO nanes, sane order, all |owercase, with case (lines starting
Wi

th #voi, #VQc)

#voi usatlas ivdgl ligo btev uscns sdss gridex grase

#VOc ATLAS i VDgL LI GO BTeV CMS SDSS CGRI DEX GRASE

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.6.2 ./BIN/GUMS-HOST

51

#---- accounts for vo: usatlas ----#
usatl asl usatl as

#---- accounts for vo: ivdgl ----#
ivdgl ivdgl

By default, the hostname used by ./bin/gums-host is simply the name of the current host. There are
some cases in which this differ from the certificate host: for example, if an alias was setup for a setrvice, or
if a gatekeeper has more than one interface. In these cases, one has to specify the name of the host.

[root @vygk bin]# ./gums-host generateGid3UserVoMap gat ekeeper.nysite.com
#User - VO map

#comment line, format of each regular line line: account VO

Next 2 lines with VO nanes, sane order, all |owercase, with case (lines starting
Wi

th #voi, #VQx)

#voi usatlas ivdgl ligo btev uscns sdss gridex grase

#VOc ATLAS iVDgL LI GO BTeV CMS SDSS GRI DEX GRASE

#---- accounts for vo: usatlas ----#

usatl asl usatl as

#---- accounts for vo: ivdgl ----#

ivdgl ivdgl

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.7 LOGGING 52

Logging

Log

GUMS is designed with 3 logs in mind: developet's log, administrator's log, site secutity log. This means
that you won't find the same things in all of them, and you shouldn't. For example, say that GUMS
connects to a VO server to retrieve a list of users, and the VO server replies with an empty list. From the
developet's perspective the code has wotked fine; but from an administrator's perspective it's probably
the sign that something not going well.

The logs come with a predefined configuration, which is what we describe here. To know more of the
details, especially how to change the configuration, refer to the logging implementation.

Administrator's log

This log is meant for the maintainer of GUMS at a particular site. He is responsible of installing and
configuring GUMS. To manage the mapping by keeping all the information up-to-date.

The log is placed under the service directory (/opt/gums-service/logs/gums-resource-admin.log). The
log can also be configured to be forwarded by mail in case of error. This is particularly useful as the
admins can be informed right away of any problem. Look at the log4j.properties configuration file.

The log includes every command that is being executed by any admins. This allow the administrator to
keep full control of what is happening, together with a history of what has happened to be able to
troubleshoot automatic procedures. The main features are:

* All successful commands are logged as INFO with both input and output parameters

* All unsuccessful commands (including failure do to authorization) are logged as ERROR

Developer's log
The developer log is meant for someone developing the code or fixing bugs.

The log is located under the service directory (/opt/gums-service/logs/gums-developer.log).

Site security log

The site security log is meant for the cybersecurity department of a lab. It includes [TODO check
requirement and implement] all the information for auditing the GUMS service. This information will be
limited to accesses to the service that are going to modify the state of the service. All the access to the
information will be typically already be logged at the gatekeeper.

The log can be configured to be forwarded to the AUTHPRIV facility of syslogd. To enable logging to
the syslogd deamon, you have to modify the log4j.properties and make sure it allows logging from the

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.7 LOGGING 53

network. To enable logging from the network, you need to start syslogd with -r option.[root@atlasgrid13
log|# cat /etc/sysconfig/syslog # Options to syslogd # -m 0 disables 'MARK' messages. # -r enables
logging from remote machines # -x disables DNS lookups on messages recieved with -r # See syslogd(8)
for more details SYSLOGD_OPTIONS="-r -m 0" # Options to klogd # -2 prints all kernel oops
messages twice; once for klogd to decode, and # once for processing with 'ksymoops' # -x disables all
klogd processing of oops messages entirely # See klogd(8) for more details KLOGD_OPTIONS="-x"

The reason is that Apache log4j SyslogAdapter can only log through the network (to allow portability),
even if you are logging to the localhost.

Another possibility is to log directly to a remote server: you can do that by modifying the log4j.properties
configuration file in the service.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

171

1.7.1 LOGGING IMPLEMENTATION 54

Logging implementation

Log implementation

All information in GUMS is logged through the apache commons logging package. The implementation
used in GUMS is apache log4j. To change the logging implementation you have to refer to the
commons.logging implementation. Be aware that some library that GUMS uses may not be as well
behaved in regard to logging.

The configuration is controlled by the log4j.properties file. This is a normal log4j configuration file: refer
to the log4j manual for more information.

GUMS using the follow conventions for log names:

* The developet's log uses one log for each different class, with the name being the class name. Given
GUMS package structure, "gov.bnl.gums" contains the whole development log for GUMS. This
allows the develop to filter the log of the code he is working on.

* The admin log uses the log named "gums.resourceAdmin"

* The site secutity log is at "gums.siteAdmin"

Administrator's log

This log is meant for whoever is maintaining GUMS installation at a particular site. The log is designed to
be used in different ways: on standard error, in a log file and in e-mails. E-mails will get from WARN up,
the standard error will receive from INFO up and the log can go down to TRACE. The breakdown on
the logging level is:

TODO: The admin log still needs a little thinking

* FATAL - GUMS is unable to operate: no functionalities are available. For example, a configuration
file was not written correctly.

* ERROR - A particular operation failed or was incomplete. For example, the CMS VOMS server
couldn't be contacted, so it's members weren't refreshed (even though the ATLAS group was); the
NIS setver didn't respond, so it is impossible to generate the gtid-mapfile for atlasgtid25, though the
grid-mapfile for atlasgrid26 could be generated since it doesn't require the NIS information.

* WARN - A condition that hints to a misconfiguration or incorrect usage. For example, a VO server
returned no users.

* INFO - A condition that might hint to a problem, but is not critical per se. For example, the NIS
mapper couldn't find a match. A big difference is that INFO doesn't trigger a mail, while WARN
does. It is preferable to log many similar problems as info and then send a WARN to actually send
the mail.

¢ DEBUG - Not used

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.7.1 LOGGING IMPLEMENTATION 55

TRACE - Not used

Developer's log

The developer log is meant for someone developing the code or fixing bugs. Each class will use the log

named as their full class name. The breakdown on the logging level is:

FATAL - An exception or an inconsistency that forces GUMS to terminate or not function at all. For
example, a configuration file was not written correctly or couldn't be found.

ERROR - An exception or an inconsistency that doesn't allow GUMS to complete a particular
operation ot part of it. For example, the CMS VOMS setver couldn't be contacted, so it's members
weren't refreshed (even though the ATLAS group was); the NIS server didn't respond, so it is
impossible to generate the grid-mapfile for atlasgrid25, though the grid-mapfile for atlasgrid26 could
be generated since it doesn't require the NIS information.

WARN - An exception or an inconsistency that is not necessarily going to affect functionalities, or an
error condition that was recovered. For example, a particular cache was found to be out of synch and
was rebuilt.

INFO - The successful completion of a macro-event (i.e. something that happens only once in a
while). For example, the configuration file was read, the server was started. Typically used to debug
configuration problems.

DEBUG - The attempt or successful completion of a smaller event. For example, a query was
executed, a user was mapped. Typically one shouldn't have more than one DEBUG statement in a
method.

TRACE - Shows the internal execution of the code. As a contrast, building a query would be at this
level. Inside method logging should be done at this level

Site security log

The site security log will log all accesses.

INFO - Will log all the "write" accesses
DEBUG - Will log all the "read" accesses

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

18

1.8 INTEGRATION 56

Integration

GUMS extension and site integration

Al the main components of GUMS are developed against interfaces with minimal coupling to GUMS itself, allowing a site
to rewrite those components to interface their systems. In this article we will describe these interfaces and provide some
integration examples. We link to the online GUMNLS code for examples; if you choose to print this, you might also
want to print the code to which the online version of thisarticle links.

GUMS doesn't require integration: it can work fine by itself. But if a site requites integration such that
GUMS communicates with the site's information systems, it is easy to do, it just requires a little
knowledge of Java. You don't need to know about the internal workings of GUMS. You can write code
(external to GUMS) to deal with special mapping circumstances, and write the policy file to tell GUMS
when to run it. Here are examples of site-specific needs:

* Store all the information that GUMS uses for mapping in a separate system that's used for the rest of
the site's accounts (e.g., in LDAP, in an Oracle or MySQL database, and so on)

* Use some pre-existing software to perform the mapping (e.g.,. as part of the user information
database, a user was already able to select the grid certificate at the site.) In this case you're using
GUMS for its role-based capabilities and for integration with OSG; it's just the glue between grid and
local site. This is good for transition situations, for maintaining compatibility with existing systems.

* Use a different database for group information (e.g.,. the site wants to map his admins in a different
way, and wants to take the list of admins directly from its databases or store them in LDAP instead of
the GUMS MySQL)

Use some other information service to decide which service should use which mapping (i.e. one
wants to set on all production machines a particular mapping, and the list of production machines is
stored within their own information setrvice)

If you have a use case that is not site-specific, we may be willing to either help in the development or to
distribute it as part of GUMS. Go to the GUMS site and use our mailing lists to contact us!

Changing storage for GUMS data

Suppose you already have a user management system that keeps some grid-to-username mapping and you
want GUMS to use it. Or suppose that you want to tightly couple the GUMS pool account system with
your site LDAP. Or suppose that you want to perform special mapping on a list of users taken directly
from some database. How would you do it?

In GUMS there is a PersistenceFactory class which is responsible for creating all the objects that write
to/from a specific external storage system (as opposed to MySQL which we'll consider internal). We've
implemented this in GUMS in the form of a MySQLPersistanceFactory class which implements the logic
of how to write/read to/from the default MySQL implementation. A site can implement its own

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.8 INTEGRATION 57

PersistenceFactory class to define where the data is written to and read from.

The PersistenceFactory is just a factory class used to create the objects that actually implement the
persistence layer. There are several different kinds of these objects, e.g.,:

* UsetGroupDB is used by GUMS to cache lists of users so that GUMS doesn't have to contact the
VO server every time.

* ManualAccountMapperDB is used by the ManualAccountMapper to store a mapping table.

You do not need to implement the all the different kinds of classes, only the kinds you need. For those
you do choose not to implement, you can use:

throw new j ava. | ang. Unsupport edOper ati onException("...");

This way, when gums tries to use a method that implements it (due to a configuration or usage error),
GUMS generates an error. This is also true for any other method you do not want to implement (e.g., you
might not want GUMS to modify the information in your site databases).

You can use the MySQLPersistenceFactory as a trace: it creates an inner class for any interface it needs to
implement, and when asked to give a persistence object it just creates an instance of the appropriate inner
class. You can thus implement a ManualAccountMapper2DB that reads the site user management system,
an AccountPoolMappetDB that reads account information from the site LDAP, and/or a
ManualUserGroupDB that reads the list of users from your database.

Creating a mapping policy

A site can create its own policies for the mapping. For examples, we suggest that you look at the mapping
code that comes with GUMS. A mapping is particularly useful for sites that have a pre-existing user
management system which already contains some certificate-to-username mapping. Through an
extension, GUMS can be made to use that mapping.

All the mappings implement the AccountMapper interface. The only method you're required to
implement is mapUser, which returns the username given the user credential.

The GroupAccountMapper interface maps all the users to the same account. The account to which
they're mapped is set through the groupName property (notice the getGroupName and setGroupName)
in the configuration file. For example:

<account Mappi ng cl assNanme=' gov. bnl . guns. G oupAccount Mapper' groupNanme='test' />

sets the groupName to "test". You can create any property you like: while reading the configuration,
GUMS looks at your class for a name match [This is actually provided by the Apache Jakarta Commons
Digester library].

We suggest you develop and test a new class by itself first, without running it in GUMS. You can have a
main method, or a set of unit tests, to simulate some requests using the mapUser method, and see that it
behaves correctly. Once you have done that, you can prepare a jar, and put it in the lib directory of the
GUMS service. You will have to restart the service, as tomcat creates the list of available jars when the

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

http://grid.racf.bnl.gov/GUMS/components/business/xref/gov/bnl/gums/ManualAccountMapperDB.html
http://grid.racf.bnl.gov/GUMS/components/business/apidocs/gov/bnl/gums/AccountMapper.html
http://grid.racf.bnl.gov/GUMS/components/business/xref/gov/bnl/gums/GroupAccountMapper.html

1.8 INTEGRATION 58

service is started. You can change the policy configuration file, instead, at any time.

Creating a group

You can create your own groups. A group is a list of users that get mapped using the same mapping
criteria. Suppose, for example, that a site wants to use a new VO server which is not supported by
GUMS. Or suppose that the site wants to grant all its admins a different mapping, and wants to get this
list directly from their LDAP system, so that there is only one place to keep updated. All of these can be
supported by creating a group.

Look at the at the UserGroup class: a group is essentially a function that is able to tell: "is this person in
the group?". The isInGroup() function is going to check, by whatever means , if the Grid Identity is
within that group.

There is a getMemberList(). This is actually optional: if you have an EveryoneGroup, for example, you
can't name everyone. In that case, you should use something like:

throw new j ava. | ang. Unsupport edQper ati onExcepti on(" G oup cannot be enunerated.");

The catch is that GUMS won't be able to generate a grid-mapfile for those hosts that make use of this
group; you can only use the gatekeeper callout functionality of GUMS with groups.

The updateMembers() function is intended for groups requiring that GUMS access some remote service
(e.g., VOMS); this cannot be done on a per request basis. For cases like these, one should implement the
updateMembers() function to retrieve and store the data on a site-local service. If you do this, you might
want to use a UserGroupDB to store the information, so that it integrates with the rest of persistence.
You can look at the VOMSGroup class for an example.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

http://grid.racf.bnl.gov/GUMS/components/business/apidocs/gov/bnl/gums/UserGroup.html
http://grid.racf.bnl.gov/GUMS/components/business/xref/gov/bnl/gums/VOMSGroup.html

1.9 OPERATION MODES 59

19 Operation modes

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.10

1.10 FAQ

Frequently Asked Questions

General

1. Is GUMS being used in production anywhere?

60

2. I hear GUMS allows you to have different mappings on different gatekeeper. Why do you want to do

that? Doesn't it complicate things?

Using GUMS

1. Does GUMS have to run as root?

Building GUMS

Comparing GUMS with other tools

1. What's the difference between GUMS and VOMS (or VOMRS)?

2. What's the difference between using GUMS and using grid-mapfiles?
3. What's the difference between GUMS and edg-mkgridmap?

4. What's the difference between GUMS and LCMAPS?

General

General

Is GUMS being used in production anywhere?
Yes, GUMS is being used at BNL for RHIC and ATLAS gatekeepers.

I hear GUMS allows you to have different mappings on different gatekeeper. Why do you want to
do that? Doesn't it complicate things?

At BNL we have different gatekeepers for different experiments , each of which has its own
individual requirements. Furthermore, each experiment may have some gatekeepers in production
and others in test; these might require slightly different configurations. It also comes in handy for
troubleshooting (an admin may want to temporarily change his mapping to a uset's if the user is
having troule with an operation) and when testing/implementing a new policy. Allowing different
mappings is only one way to address these situations. For example, they could be addressed by
implementing roles in the VO servers. It turns out that GUMS actually helps in keeping the
mapping identical at all gatekeepers: this is what we generally want to do at BNL and one of the
reasons we developed GUMS. But we still need to cope with the "irregularities" that a production
environment may present.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.10 FAQ 61

Using GUMS

Using GUMS
Does GUMS have to run as root?

No. GUMS runs under tomcat, and will run fine no matter what userid you use to run tomcat.

Building GUMS
Building GUMS

Comparing GUMS with other tools

Comparing GUMS with other tools
What's the difference between GUMS and VOMS (or VOMRS)?

First of all, GUMS is a site tool and VOMS is a VO tool. L.e., you have a BNL GUMS, whereas you
have an ATLAS VOMS. A VO uses VOMS to keep a list of members and their roles within the
organization. A site uses GUMS to maintain the mapping between members' GRID credentials
(certificates) and local site credentials (e.g., UNIX accounts).

GUMS can contact VOMS to retrieve the list of VO users that require a particular mapping. For
example, if the GUMS configuration says: "all ATLAS members should be mapped to the 'atlas’

account" then GUMS would contact the ATLAS VOMS server to find out who all the ATLAS
members ate.

What's the difference between using GUMS and using grid-mapfiles?

If you want to use grid-mapfiles, GUMS can be used to generate them, as can various other external
tools. Usually grid-mapfiles are generated according to the information present in the VOMS
servers. For example, the external tool would contact the ATLAS VOMS, download the list of
current users, and add them to the grid-mapfile.

Using grid-mapfiles by itself is typically good only in testing environments. GUMS provides an
alternative. GUMS can be configured to provide dynamic mapping, thereby making grid-mapfiles
unnecessary. In this configuration, the gatekeeper contacts GUMS directly when it needs a mapping,
instead of consulting a grid-mapfile.

What's the difference between GUMS and edg-mkgridmap?

Edg-mkgridmap and the GUMS host (client) tool can both be used to create a grid-mapfile for a
host. Edg-mkgridmap is a client (gatekeeper) tool only; it connects to the VOMRS databases,
downloads info and creates a grid-mapfile for that gatekeeper only. GUMS has server and client
portions. The GUMS server (which serves all the gatekeepers at the site) connects to the VOMRS
databases, downloads info, and performs the mapping, then the GUMS host tool creates the
site-wide grid-mapfile. GUMS provides a way to centrally manage resource access and the mapfile
generation. Edg-mkgridmap can be used to contact GUMS to retrieve an already prepared
grid-mapfile.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.10 FAQ

In addition, GUMS supports a richer, more complex and flexible policy than does edg-mkgridmap.
You can also use GUMS for both grid-mapfile generation and in conjuction with a gatekeeper (or
service) callout. For a small site with a simple configuration, edg-mkgridmap might be a simpler
solution. For a bigger site, with a more complicated environment, GUMS offers more control and

flexibility.
What's the difference between GUMS and LCMAPS?

WARNING: I am not an expert in LCMAPS. This is my understanding of the differences.

The short (and not 100% precise) answer is: GUMS is a Policy Decision Point while LCMAPS is a
Policy Enforcement Point. The longer answer is: GUMS allows you to set a policy at the site level
for all your gatekeepers or resources. It's a service that waits for and responds to questions like:
"Who should I map this guy to?". It doesn't actually enforce the mapping. In fact, GUMS cannot
stand by itself; it needs to have other software contact it to either retrieve a grid-mapfile or to
request a specific mapping (e.g., the GUMS host tools, or the gatekeeper callout).

LCMAPS, on the other hand, is inside the gatekeeper (or the gridftp server). It implements the
callout, it determines and enforces the mapping. There is one for every gatekeeper; there is no
central mapping, and no central policy. You configure each gatekeeper individually.

They are two different things, even though they implement some similar functionalities. In fact,
LCMAPS could be used as the PDP for GUMS (i.e., LCAMPS could connect to GUMS as part of
its decision process).

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.11 CHANGES

111 Changes

Release History

Version Date Description
1.0.1 2005-04-07

1.0.0 2005-03-16

0.7.1 2005-02-01

0.7 2005-01-14

0.6.1 2004-08-10

0.6 2004-07-01

0.5 2004-05-20

undetermined before March 2004

Get the RSS feed of the last changes

Release 1.0.1 - 2005-04-07

Type Changes By

Including setupDatabase with the modification carcassi
ﬁ} made for VDT

gums-client rpm now obsoletes gums-host carcassi
Eu and gums-admin (no need to remove

package).

Error code from scripts was incorrect: that carcassi
% caused cron job to update maps in case of

error too.

Release 1.0.0 - 2005-03-16

Type Changes By
Repackaging of the client components: carcassi
G-:E' merged admin and host, and named it client.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.11 CHANGES

GUMS hang in some circumstances.

Type Changes By
Fixed minor issues with authorization mlorch
% obligations for storage system.
% Double add to a manual group now fails. carcassi
Script that creates the database and changes carcassi
E. the configuration accordingly.
ﬁ} Repackaging of the service component. carcassi
% Server identity is now gums host name. carcassi
% GUMS accept new style proxies. carcassi
The accounts in the pool are used in carcassi
ﬁi} alphabetical order.
Inverse map is now generated exploring all carcassi
% the DN/FQAN combinations.
Gridmapfile is generated simulating users carcassi
% with no FQAN.
LDAP integration for primary gid change at carcassi
E. BNL once an account is assigned.
Release 0.7.1 - 2005-02-01
Type Changes By
Log names review so that they both client and carcassi
% server can stay (through links) in the same
directory.
NIS update is done every hour and is now carcassi
ﬁ} thread safe.
Log file permission for the command line tools carcassi
% are set so multiple users can use it (important
for admin).
GUMS host can now be used for stress carcassi
E. testing and timing the server response.
E. Added connection pooling on mysq|l server. carcassi
% Solved a race condition that would make carcassi

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.11 CHANGES

Type Changes By
AuthZ callout without GT3, both client and mlorch
E- server stubs.
Added code for Privilege Project in GUMS carcassi
E. repository and build process.
Release 0.7 - 2005-01-14
Type Changes By
Better logging: server logs all commands with carcassi
G-:E' both input and output
ﬁ} More complete command line interface carcassi
E. Web service implementation carcassi
HostWildcards can be more than one, comma carcassi
ﬁ} separated
Support for VOMS Fully Qualified Attribute carcassi
E. names
AuthZ service to be contacted by Globus carcassi
E- callout
E. Support for grid3-user-vo-map.txt generation carcassi
E. Many many other refinements... carcassi
Release 0.6.1 - 2004-08-10
Type Changes By
E. Nightly build and reporting with Maven carcassi
@ Removed all the old code from 0.6 carcassi
Better log system: logs for developer, carcassi

@

resource admin and site admin in place

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.11 CHANGES

Type Changes By
Ability to retrieve groups from within a VOMS carcassi
E- server (finally)
ﬁ No more duplication in the mapfiles carcassi
Improved database caching for grid-mapfile: carcassi
G-:E' you specify on the server which gatekeeper
maps should be generated
Improved error handling (i.e. a failed update carcassi
Eu on one group doesn't block the others)
Installation through RPMs (cron jobs installed carcassi
E- automatically)
E. Unit tests to Grid3 VOs included carcassi
LDAP access improved: can access LCG dev carcassi
%, vo
Release 0.6 - 2004-07-01
Type Changes By
E. XML configuration file for mapping policy carcassi
E. Log infrastructure carcassi
i E More flexible architecture carcassi
Decoupled grid-mapfile generation from carcassi
E. database caching for distribution on
gatekeeper
Web interface to generate grid-mapfiles and carcassi
E. map users
i [-:I- Better command line interfaces (feel like Unix carcassi

commands)

Release 0.5 - 2004-05-20

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.11 CHANGES

Type Changes By
ﬁl GUMS in production at BNL carcassi

NI SMapper retrieves the GECOS field and carcassi
EI matches with certificate CN.

Architecture to allow different type of carcassi
E. mappings for different hosts

Release undetermined - before March 2004

Type Changes By
E. Script to fetch user from VOMS dtyu
E. Script to map user to local account tomw

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

